IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7261-d838157.html
   My bibliography  Save this article

Study on the Performance of Collaborative Production Mode for Gas Wave Ejector

Author

Listed:
  • Yiming Zhao

    (Department of Chemical Machinery, Dalian University of Technology, Dalian 116012, China)

  • Haoran Li

    (Department of Chemical Machinery, Dalian University of Technology, Dalian 116012, China)

  • Dapeng Hu

    (Department of Chemical Machinery, Dalian University of Technology, Dalian 116012, China)

  • Minghao Liu

    (Department of Chemical Machinery, Dalian University of Technology, Dalian 116012, China)

  • Qing Feng

    (Department of Chemical Machinery, Dalian University of Technology, Dalian 116012, China)

Abstract

Gas wave ejector (GWE) is an efficient ejection equipment using pressure waves to extract and transfer energy. However, at present, GWE is designed only for single condition, not fully utilizing the production capacity. The collaborative production mode using one equipment to work simultaneously under two different conditions was proposed to resolve this issue in this study, and was analyzed by combining numerical simulation and experimental test. The research results show that the collaborative mode almost has no effects on average total efficiency compared to single mode. In the range of tests, the efficiency difference between two modes is within 4.4%. The state parameters of the stable-pressure region (where channels are closed at both ends) on one condition are the initial parameters of the functional region on the other condition in collaborative mode, accounting for the difference between single and collaborative mode. The variations of performance parameters (ejection rate and the isentropic efficiency) with the medium-port pressure in collaborative mode was similar to that of the single mode. Thus, the performance parameters difference between two modes can be predicted by the relative relationship between the medium-port pressure and the average pressure in stable-pressure region of GWE in single mode. In conclusion, the collaborative mode improves the utilization of equipment while maintaining total efficiency, which can promote the popularization and application of GWE.

Suggested Citation

  • Yiming Zhao & Haoran Li & Dapeng Hu & Minghao Liu & Qing Feng, 2022. "Study on the Performance of Collaborative Production Mode for Gas Wave Ejector," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7261-:d:838157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fahid Riaz & Kah Hoe Tan & Muhammad Farooq & Muhammad Imran & Poh Seng Lee, 2020. "Energy Analysis of a Novel Ejector-Compressor Cooling Cycle Driven by Electricity and Heat (Waste Heat or Solar Energy)," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    2. Zhu, Yinhai & Jiang, Peixue, 2014. "Bypass ejector with an annular cavity in the nozzle wall to increase the entrainment: Experimental and numerical validation," Energy, Elsevier, vol. 68(C), pages 174-181.
    3. Tüchler, Stefan & Copeland, Colin D., 2020. "Experimental and numerical assessment of an optimised, non-axial wave rotor turbine," Applied Energy, Elsevier, vol. 268(C).
    4. Lin, Chen & Cai, Wenjian & Li, Yanzhong & Yan, Jia & Hu, Yu, 2012. "The characteristics of pressure recovery in an adjustable ejector multi-evaporator refrigeration system," Energy, Elsevier, vol. 46(1), pages 148-155.
    5. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    2. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    3. Li, Shengyu & Yan, Jia & Liu, Zhan & Yao, Yong & Li, Xianbi & Wen, Na & Zou, Guorong, 2019. "Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks," Energy, Elsevier, vol. 189(C).
    4. Tang, Yongzhi & Liu, Zhongliang & Shi, Can & Li, Yanxia, 2018. "A novel steam ejector with pressure regulation to optimize the entrained flow passage for performance improvement in MED-TVC desalination system," Energy, Elsevier, vol. 158(C), pages 305-316.
    5. Song, Tao & Tian, Jinyi & Ni, Long & Shen, Chao & Yao, Yang, 2018. "Experimental study on enhanced separation of a novel de-foulant hydrocyclone with a reflux ejector," Energy, Elsevier, vol. 163(C), pages 490-500.
    6. Zhao, Yiming & Hu, Dapeng & Yu, Yang & Li, Haoran, 2023. "Study on gas wave ejector with a novel wave rotor applied in natural gas extraction," Energy, Elsevier, vol. 277(C).
    7. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    9. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    10. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    11. Wang, Lei & Liu, Jiapeng & Zou, Tao & Du, Jingwei & Jia, Fengze, 2018. "Auto-tuning ejector for refrigeration system," Energy, Elsevier, vol. 161(C), pages 536-543.
    12. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    13. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    14. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    15. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    16. Llorenç Macia & Robert Castilla & Pedro Javier Gamez-Montero & Gustavo Raush, 2022. "Multi-Factor Design for a Vacuum Ejector Improvement by In-Depth Analysis of Construction Parameters," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    17. Shining Chan & Yeyu Chen & Fei Xing & Huoxing Liu, 2022. "Effect of Stagger Angle of Rotor Channels on the Wave Rotor," Energies, MDPI, vol. 15(24), pages 1-20, December.
    18. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    19. Mohamed, Saleh & Shatilla, Youssef & Zhang, TieJun, 2019. "CFD-based design and simulation of hydrocarbon ejector for cooling," Energy, Elsevier, vol. 167(C), pages 346-358.
    20. Anas F. A. Elbarghthi & Mohammad Yousef Hdaib & Václav Dvořák, 2021. "A Novel Generator Design Utilised for Conventional Ejector Refrigeration Systems," Energies, MDPI, vol. 14(22), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7261-:d:838157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.