IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6235-d819999.html
   My bibliography  Save this article

Lightning Protection, Cost Analysis and Improved Efficiency of Solar Power Plant for Irrigation System

Author

Listed:
  • Waqas Rahim

    (Department of Electrical Engineering, CECOS University of IT & Emerging Sciences, Peshawar 25000, Pakistan)

  • Irshad Ullah

    (Department of Electrical Engineering, CECOS University of IT & Emerging Sciences, Peshawar 25000, Pakistan)

  • Nasim Ullah

    (Department of Electrical Engineering, Taif University of KSA, Taif 21944, Saudi Arabia)

  • Ahmad Aziz Alahmadi

    (Department of Electrical Engineering, Taif University of KSA, Taif 21944, Saudi Arabia)

Abstract

The constraints in the path of sustainable, cost-effective, and efficient photovoltaic power supply to the irrigation system in remote areas are addressed in this work. The intrinsic thermal losses in the PV system due to high working temperature and shading losses that are caused by dirt are mitigated through water cleaning mechanisms. Moreover, the protection against lightning strikes and surges is assimilated in the system to ensure the durability of the PV system. Lastly, cost analysis of 0.4 MW PV plant for the Area of 7444.69 m 2 has been performed by the Homer Pro, and comparison is made with the same size of a Hydro power plant to estimate the economic feasibility of power generation for the purpose of irrigation through the pump house. The water-cooling mechanism resulted in the gain of one volt per panel of 260 W, which is a significant improvement with regard to collective PV plant generation. As the water cleaning mechanism for dust removal is accompanied with the cooling process, it results in the two volts rise per panel. Additionally, a cost analysis of 0.4 MW PV system provided a significant budget saving estimating USD ~2 million as compared to that of a Hydel power plant of the same size.

Suggested Citation

  • Waqas Rahim & Irshad Ullah & Nasim Ullah & Ahmad Aziz Alahmadi, 2022. "Lightning Protection, Cost Analysis and Improved Efficiency of Solar Power Plant for Irrigation System," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6235-:d:819999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Irfan & Zhen-Yu Zhao & Munir Ahmad & Marie Claire Mukeshimana, 2019. "Solar Energy Development in Pakistan: Barriers and Policy Recommendations," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    2. Shahzad, M. Kashif & Zahid, Adeem & ur Rashid, Tanzeel & Rehan, Mirza Abdullah & Ali, Muzaffar & Ahmad, Mueen, 2017. "Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software," Renewable Energy, Elsevier, vol. 106(C), pages 264-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamel Guedri & Mohamed Salem & Mamdouh El Haj Assad & Jaroon Rungamornrat & Fatimah Malek Mohsen & Yonis M. Buswig, 2022. "PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy Analysis," Sustainability, MDPI, vol. 14(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    2. Muhammad Bilal Ali & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2023. "Decarbonizing Telecommunication Sector: Techno-Economic Assessment and Optimization of PV Integration in Base Transceiver Stations in Telecom Sector Spreading across Various Geographically Regions," Energies, MDPI, vol. 16(9), pages 1-34, April.
    3. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    4. Arifa Tanveer & Shihong Zeng & Muhammad Irfan & Rui Peng, 2021. "Do Perceived Risk, Perception of Self-Efficacy, and Openness to Technology Matter for Solar PV Adoption? An Application of the Extended Theory of Planned Behavior," Energies, MDPI, vol. 14(16), pages 1-24, August.
    5. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    6. Deepika Bishnoi & Harsh Chaturvedi, 2022. "Optimal Design of a Hybrid Energy System for Economic and Environmental Sustainability of Onshore Oil and Gas Fields," Energies, MDPI, vol. 15(6), pages 1-21, March.
    7. Pei-Hsuan Tsai & Chih-Jou Chen & Ho-Chin Yang, 2021. "Using Porter’s Diamond Model to Assess the Competitiveness of Taiwan’s Solar Photovoltaic Industry," SAGE Open, , vol. 11(1), pages 21582440209, January.
    8. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    9. Sun, Yunpeng & Razzaq, Asif & Sun, Huaping & Irfan, Muhammad, 2022. "The asymmetric influence of renewable energy and green innovation on carbon neutrality in China: Analysis from non-linear ARDL model," Renewable Energy, Elsevier, vol. 193(C), pages 334-343.
    10. Vishnupriyan, J. & Manoharan, P.S., 2017. "Demand side management approach to rural electrification of different climate zones in Indian state of Tamil Nadu," Energy, Elsevier, vol. 138(C), pages 799-815.
    11. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    12. Łukasz Augustowski & Piotr Kułyk, 2023. "The Economic Profitability of Photovoltaic Installations in Households in Poland from a New Policy Perspective," Energies, MDPI, vol. 16(22), pages 1-16, November.
    13. Sun, Bohan & Gao, Ke & Liu, Shuai & Wei, Qiaoqiao & Wang, Hui, 2023. "Assessing the performance and economic viability of solar home systems: A way forward towards clean energy exploration and consumption," Renewable Energy, Elsevier, vol. 208(C), pages 409-419.
    14. Liang, Jinhao & Irfan, Muhammad & Ikram, Muhammad & Zimon, Dominik, 2022. "Evaluating natural resources volatility in an emerging economy: The influence of solar energy development barriers," Resources Policy, Elsevier, vol. 78(C).
    15. Lv, Shuaishuai & Wang, Hui & Meng, Xiangping & Yang, Chengdong & Wang, Mingyue, 2022. "Optimal capacity configuration model of power-to-gas equipment in wind-solar sustainable energy systems based on a novel spatiotemporal clustering algorithm: A pathway towards sustainable development," Renewable Energy, Elsevier, vol. 201(P1), pages 240-255.
    16. Yunis Ali Ahmed & Ammar Rashid & Muhammad Mahboob Khurshid, 2022. "Investigating the Determinants of the Adoption of Solar Photovoltaic Systems—Citizen’s Perspectives of Two Developing Countries," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    17. Sıdıka Ece Yılmaz & Hasan Yildizhan & Cihan Yıldırım & Chuang-Yao Zhao & João Gomes & Tarik Alkharusi, 2023. "The Drivers and Barriers of the Solar Water Heating Entrepreneurial System: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    18. Figaj, Rafał, 2021. "Performance assessment of a renewable micro-scale trigeneration system based on biomass steam cycle, wind turbine, photovoltaic field," Renewable Energy, Elsevier, vol. 177(C), pages 193-208.
    19. Karmaker, Shamal Chandra & Barai, Munim Kumar & Sen, Kanchan Kumar & Saha, Bidyut Baran, 2023. "Effects of remittances on renewable energy consumption: Evidence from instrumental variable estimation with panel data," Utilities Policy, Elsevier, vol. 83(C).
    20. Ahmad, Tanveer & Zhang, Dongdong, 2021. "Renewable energy integration/techno-economic feasibility analysis, cost/benefit impact on islanded and grid-connected operations: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 83-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6235-:d:819999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.