IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5946-d815189.html
   My bibliography  Save this article

Mechanical Characterization of Industrial Waste Materials as Mineral Fillers in Asphalt Mixes: Integrated Experimental and Machine Learning Analysis

Author

Listed:
  • Nitin Tiwari

    (Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
    Department of Civil Engineering, Indian Institute of Technology Indore, Indore 452020, India)

  • Nicola Baldo

    (Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, 33100 Udine, Italy)

  • Neelima Satyam

    (Department of Civil Engineering, Indian Institute of Technology Indore, Indore 452020, India)

  • Matteo Miani

    (Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, 33100 Udine, Italy)

Abstract

In this study, the effect of seven industrial waste materials as mineral fillers in asphalt mixtures was investigated. Silica fume (SF), limestone dust (LSD), stone dust (SD), rice husk ash (RHA), fly ash (FA), brick dust (BD), and marble dust (MD) were used to prepare the asphalt mixtures. The obtained experimental results were compared with ordinary Portland cement (OPC), which is used as a conventional mineral filler. The physical, chemical, and morphological assessment of the fillers was performed to evaluate the suitability of industrial waste to replace the OPC. The volumetric, strength, and durability of the modified asphalt mixes were examined to evaluate their performance. The experimental data have been processed through artificial neural networks (ANNs), using k-fold cross-validation as a resampling method and two different activation functions to develop predictive models of the main mechanical and volumetric parameters. In the current research, the two most relevant parameters investigated are the filler type and the filler content, given that they both greatly affect the asphalt concrete mechanical performance. The asphalt mixes have been optimized by means of the Marshall stability analysis, and after that, for each different filler, the optimum asphalt mixtures were investigated by carrying out Indirect tensile strength, moisture susceptibility, and abrasion loss tests. The moisture sensitivity of the modified asphalt mixtures is within the acceptable limit according to the Indian standard. Asphalt mixes modified with the finest mineral fillers exhibited superior stiffness and cracking resistance. Experimental results show higher moisture resistance in calcium-dominant mineral filler-modified asphalt mixtures. Except for mixes prepared with RHA and MD (4% filler content), all the asphalt mixtures considered in this study show MS values higher than 10 kN, as prescribed by Indian regulations. All the values of the void ratio for each asphalt mix have been observed to range between 3–5%, and MQ results were observed between 2 kN/mm–6 kN/mm, which falls within the acceptable range of the Indian specification. Partly due to implementing a data-augmentation strategy based on interpolation, the ANN modeling was very successful, showing a coefficient of correlation averaged over all output variables equal to 0.9967.

Suggested Citation

  • Nitin Tiwari & Nicola Baldo & Neelima Satyam & Matteo Miani, 2022. "Mechanical Characterization of Industrial Waste Materials as Mineral Fillers in Asphalt Mixes: Integrated Experimental and Machine Learning Analysis," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5946-:d:815189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Volker Liermann & Sangmeng Li, 2021. "Methods of Machine Learning," Springer Books, in: Volker Liermann & Claus Stegmann (ed.), The Digital Journey of Banking and Insurance, Volume III, pages 225-238, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo Monticelli & Antonio Roberto & Elena Romeo & Gabriele Tebaldi, 2023. "Mixed Design Optimization of Polymer-Modified Asphalt Mixtures (PMAs) Containing Carton Plastic Packaging Wastes," Sustainability, MDPI, vol. 15(13), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Lazzeroni & Brunella Caroleo & Maurizio Arnone & Cristiana Botta, 2021. "A Simplified Approach to Estimate EV Charging Demand in Urban Area: An Italian Case Study," Energies, MDPI, vol. 14(20), pages 1-18, October.
    2. Mariusz Woszczyński & Joanna Rogala-Rojek & Krzysztof Stankiewicz, 2022. "Advancement of the Monitoring System for Arch Support Geometry and Loads," Energies, MDPI, vol. 15(6), pages 1-21, March.
    3. Gang Zhou & Manyi Cui & Junhong Wan & Shiqiang Zhang, 2021. "A Review on Snowmelt Models: Progress and Prospect," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    4. Xiangyong Ni & Kangkang Duan, 2022. "Machine Learning-Based Models for Shear Strength Prediction of UHPFRC Beams," Mathematics, MDPI, vol. 10(16), pages 1-26, August.
    5. Vikkram Singh & Joshua Chobotaru, 2022. "Digital Divide: Barriers to Accessing Online Government Services in Canada," Administrative Sciences, MDPI, vol. 12(3), pages 1-12, September.
    6. Jingfang Liu & Mengshi Shi & Huihong Jiang, 2022. "Detecting Suicidal Ideation in Social Media: An Ensemble Method Based on Feature Fusion," IJERPH, MDPI, vol. 19(13), pages 1-13, July.
    7. Liuchang Xu & Jie Wang & Dayu Xu & Liang Xu, 2022. "Integrating Individual Factors to Construct Recognition Models of Consumer Fraud Victimization," IJERPH, MDPI, vol. 19(1), pages 1-12, January.
    8. Qinglin Wu & Meidie Pan & Shikai Zhang & Dongpeng Sun & Yang Yang & Dong Chen & David A. Weitz & Xiang Gao, 2022. "Research Progress in High-Throughput Screening of CO 2 Reduction Catalysts," Energies, MDPI, vol. 15(18), pages 1-18, September.
    9. William Mounter & Chris Ogwumike & Huda Dawood & Nashwan Dawood, 2021. "Machine Learning and Data Segmentation for Building Energy Use Prediction—A Comparative Study," Energies, MDPI, vol. 14(18), pages 1-42, September.
    10. Milad Zam & Mohammadhosein Tavakoli & Hasan Ramezanian & Amin Rezasoltani, 2022. "Assessing the different aspects of consuming fashion and the role of self-confidence on the buying behaviour of fashion consumers in the clothing market as a mediator," Papers 2209.02367, arXiv.org.
    11. Jeeheon Kim & Yongsug Hong & Namchul Seong & Daeung Danny Kim, 2022. "Assessment of ANN Algorithms for the Concentration Prediction of Indoor Air Pollutants in Child Daycare Centers," Energies, MDPI, vol. 15(7), pages 1-17, April.
    12. Fang Xia & Youwei Zhu & Bifeng Hu & Xueyao Chen & Hongyi Li & Kejian Shi & Liuchang Xu, 2021. "Pollution Characteristics, Spatial Patterns, and Sources of Toxic Elements in Soils from a Typical Industrial City of Eastern China," Land, MDPI, vol. 10(11), pages 1-20, October.
    13. Xingpeng Li & Hongzhe Jiang & Xuesong Jiang & Minghong Shi, 2021. "Identification of Geographical Origin of Chinese Chestnuts Using Hyperspectral Imaging with 1D-CNN Algorithm," Agriculture, MDPI, vol. 11(12), pages 1-19, December.
    14. Bo Ram Park & Ye Seul Eom & Dong Hee Choi & Dong Hwa Kang, 2021. "Estimation of Outdoor PM 2.5 Infiltration into Multifamily Homes Depending on Building Characteristics Using Regression Models," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    15. Yang Zhang & Bora Cetin & Tuncer B. Edil, 2021. "Seasonal Performance Evaluation of Pavement Base Using Recycled Materials," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    16. Eldar Yeskuatov & Sook-Ling Chua & Lee Kien Foo, 2022. "Leveraging Reddit for Suicidal Ideation Detection: A Review of Machine Learning and Natural Language Processing Techniques," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    17. Qi Chu & Guang Bao & Jiayu Sun, 2022. "Progress and Prospects of Destination Image Research in the Last Decade," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    18. Israr Ullah & Bilal Aslam & Syed Hassan Iqbal Ahmad Shah & Aqil Tariq & Shujing Qin & Muhammad Majeed & Hans-Balder Havenith, 2022. "An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping," Land, MDPI, vol. 11(8), pages 1-20, August.
    19. Yan Yang & Chunfa Sha & Wencheng Su & Edwin Kofi Nyefrer Donkor, 2022. "Research on Online Destination Image of Zhenjiang Section of the Grand Canal Based on Network Content Analysis," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    20. Muhammad Majeed & Aqil Tariq & Muhammad Mushahid Anwar & Arshad Mahmood Khan & Fahim Arshad & Faisal Mumtaz & Muhammad Farhan & Lili Zhang & Aroosa Zafar & Marjan Aziz & Sanaullah Abbasi & Ghani Rahma, 2021. "Monitoring of Land Use–Land Cover Change and Potential Causal Factors of Climate Change in Jhelum District, Punjab, Pakistan, through GIS and Multi-Temporal Satellite Data," Land, MDPI, vol. 10(10), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5946-:d:815189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.