IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1265-d882468.html
   My bibliography  Save this article

An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping

Author

Listed:
  • Israr Ullah

    (Division of Earth Sciences and Geography, RWTH Aachen University, 52062 Aachen, Germany)

  • Bilal Aslam

    (School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA)

  • Syed Hassan Iqbal Ahmad Shah

    (Division of Earth and Planetary Science, University of Hong Kong, Hong Kong, China
    Laboratory for Space Research, University of Hong Kong, Hong Kong, China)

  • Aqil Tariq

    (State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
    Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, 775 Stone Boulevard, Starkville, MS 39762, USA
    These authors contributed equally to this work.)

  • Shujing Qin

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
    These authors contributed equally to this work.)

  • Muhammad Majeed

    (Department of Botany, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan)

  • Hans-Balder Havenith

    (Georisk & Environment, Department of Geology, University of Liege, 4000 Liege, Belgium)

Abstract

Landslides triggered in mountainous areas can have catastrophic consequences, threaten human life, and cause billions of dollars in economic losses. Hence, it is imperative to map the areas susceptible to landslides to minimize their risk. Around Abbottabad, a large city in northern Pakistan, a large number of landslides can be found. This study aimed to map the landslide susceptibility over these regions in Pakistan by using three Machine Learning (ML) techniques, specifically Linear Regression (LiR), Logistic Regression (LoR), and Support Vector Machine (SVM). Several influencing factors were used to identify the potential landslide areas, including elevation, slope degree, slope aspect, general curvature, plan curvature, profile curvature, landcover classification system, Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI), soil, lithology, fault density, topographic roughness index, and road density. The weights of these factors were calculated using ML techniques. The weightage overlay tool is adopted to map the final output. According to three ML models, lithology, NDWI, slope, and LCCS significantly impact landslide occurrence. The area under the ROC curve (AUC) is applied to validate the performance of models, and the results show the AUC value of LiR (88%) is better than SVM (86%) and LoR (85%) models. ML models and final susceptibility map gives good accuracy, which can be reliable for the results. The study’s outcome provides baselines for policymakers to propose adequate protection and mitigation measures against the landslides in the region, and any other researcher can adopt this methodology to map the landslide susceptibility in another area having similar characteristics.

Suggested Citation

  • Israr Ullah & Bilal Aslam & Syed Hassan Iqbal Ahmad Shah & Aqil Tariq & Shujing Qin & Muhammad Majeed & Hans-Balder Havenith, 2022. "An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping," Land, MDPI, vol. 11(8), pages 1-20, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1265-:d:882468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Kouli & Constantinos Loupasakis & Pantelis Soupios & Filippos Vallianatos, 2010. "Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 599-621, March.
    2. Bakhtiar Feizizadeh & Thomas Blaschke, 2013. "GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2105-2128, February.
    3. D. Alexakis & A. Agapiou & M. Tzouvaras & K. Themistocleous & K. Neocleous & S. Michaelides & D. Hadjimitsis, 2014. "Integrated use of GIS and remote sensing for monitoring landslides in transportation pavements: the case study of Paphos area in Cyprus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 119-141, May.
    4. Volker Liermann & Sangmeng Li, 2021. "Methods of Machine Learning," Springer Books, in: Volker Liermann & Claus Stegmann (ed.), The Digital Journey of Banking and Insurance, Volume III, pages 225-238, Springer.
    5. Jewgenij Torizin & Michael Fuchs & Adnan Alam Awan & Ijaz Ahmad & Sardar Saeed Akhtar & Simon Sadiq & Asif Razzak & Daniel Weggenmann & Faseeh Fawad & Nimra Khalid & Faisan Sabir & Ahsan Jamal Khan, 2017. "Statistical landslide susceptibility assessment of the Mansehra and Torghar districts, Khyber Pakhtunkhwa Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 757-784, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Yang & Xiaozhi Men & Yangsheng Liu & Huigeng Mao & Yingnan Wang & Li Wang & Xiran Zhou & Chong Niu & Xiao Xie, 2023. "Estimation of Landslide and Mudslide Susceptibility with Multi-Modal Remote Sensing Data and Semantics: The Case of Yunnan Mountain Area," Land, MDPI, vol. 12(10), pages 1-15, October.
    2. Chong Niu & Kebo Ma & Xiaoyong Shen & Xiaoming Wang & Xiao Xie & Lin Tan & Yong Xue, 2023. "Attention-Enhanced Region Proposal Networks for Multi-Scale Landslide and Mudslide Detection from Optical Remote Sensing Images," Land, MDPI, vol. 12(2), pages 1-12, January.
    3. Purna Bahadur Thapa & Saurav Lamichhane & Khagendra Prasad Joshi & Aayoush Raj Regmi & Divya Bhattarai & Hari Adhikari, 2023. "Landslide Susceptibility Assessment in Nepal’s Chure Region: A Geospatial Analysis," Land, MDPI, vol. 12(12), pages 1-20, December.
    4. Asad Aziz & Muhammad Mushahid Anwar & Muhammad Majeed & Sammer Fatima & Syed Shajee Mehdi & Wali Muhammad Mangrio & Amine Elbouzidi & Muhammad Abdullah & Shadab Shaukat & Nafeesa Zahid & Eman A. Mahmo, 2023. "Quantifying Landscape and Social Amenities as Ecosystem Services in Rapidly Changing Peri-Urban Landscape," Land, MDPI, vol. 12(2), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Bera & Bhabani Prasad Mukhopadhyay & Debasish Das, 2019. "Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 935-959, March.
    2. D. Alexakis & A. Agapiou & M. Tzouvaras & K. Themistocleous & K. Neocleous & S. Michaelides & D. Hadjimitsis, 2014. "Integrated use of GIS and remote sensing for monitoring landslides in transportation pavements: the case study of Paphos area in Cyprus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 119-141, May.
    3. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    4. Samereh Pourmoradian & Ali Vandshoari & Davoud Omarzadeh & Ayyoob Sharifi & Naser Sanobuar & Seyyed Samad Hosseini, 2021. "An Integrated Approach to Assess Potential and Sustainability of Handmade Carpet Production in Different Areas of the East Azerbaijan Province of Iran," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    5. Yang Zhang & Bora Cetin & Tuncer B. Edil, 2021. "Seasonal Performance Evaluation of Pavement Base Using Recycled Materials," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    6. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.
    7. Paolo Lazzeroni & Brunella Caroleo & Maurizio Arnone & Cristiana Botta, 2021. "A Simplified Approach to Estimate EV Charging Demand in Urban Area: An Italian Case Study," Energies, MDPI, vol. 14(20), pages 1-18, October.
    8. Eldar Yeskuatov & Sook-Ling Chua & Lee Kien Foo, 2022. "Leveraging Reddit for Suicidal Ideation Detection: A Review of Machine Learning and Natural Language Processing Techniques," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    9. Qi Chu & Guang Bao & Jiayu Sun, 2022. "Progress and Prospects of Destination Image Research in the Last Decade," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    10. Aihua Wei & Duo Li & Yahong Zhou & Qinghai Deng & Liangdong Yan, 2021. "A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 405-430, January.
    11. Mariusz Woszczyński & Joanna Rogala-Rojek & Krzysztof Stankiewicz, 2022. "Advancement of the Monitoring System for Arch Support Geometry and Loads," Energies, MDPI, vol. 15(6), pages 1-21, March.
    12. Abhik Saha & Vasanta Govind Kumar Villuri & Ashutosh Bhardwaj, 2022. "Development and Assessment of GIS-Based Landslide Susceptibility Mapping Models Using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India," Land, MDPI, vol. 11(10), pages 1-27, October.
    13. Flavio Borfecchia & Gerardo Canio & Luigi Cecco & Alessandro Giocoli & Sergio Grauso & Luigi Porta & Sandro Martini & Maurizio Pollino & Ivan Roselli & Alessandro Zini, 2016. "Mapping the earthquake-induced landslide hazard around the main oil pipeline network of the Agri Valley (Basilicata, southern Italy) by means of two GIS-based modelling approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 759-777, March.
    14. Charalampos Kontoes & Constantinos Loupasakis & Ioannis Papoutsis & Stavroula Alatza & Eleftheria Poyiadji & Athanassios Ganas & Christina Psychogyiou & Mariza Kaskara & Sylvia Antoniadi & Natalia Spa, 2021. "Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data," Land, MDPI, vol. 10(4), pages 1-25, April.
    15. Muhammad Basharat & Muhammad Tayyib Riaz & M. Qasim Jan & Chong Xu & Saima Riaz, 2021. "A review of landslides related to the 2005 Kashmir Earthquake: implication and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1-30, August.
    16. Showmitra Kumar Sarkar & Saifullah Bin Ansar & Khondaker Mohammed Mohiuddin Ekram & Mehedi Hasan Khan & Swapan Talukdar & Mohd Waseem Naikoo & Abu Reza Towfiqul Islam & Atiqur Rahman & Amir Mosavi, 2022. "Developing Robust Flood Susceptibility Model with Small Numbers of Parameters in Highly Fertile Regions of Northwest Bangladesh for Sustainable Flood and Agriculture Management," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    17. Gang Zhou & Manyi Cui & Junhong Wan & Shiqiang Zhang, 2021. "A Review on Snowmelt Models: Progress and Prospect," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    18. Yan Yang & Chunfa Sha & Wencheng Su & Edwin Kofi Nyefrer Donkor, 2022. "Research on Online Destination Image of Zhenjiang Section of the Grand Canal Based on Network Content Analysis," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    19. Xiangyong Ni & Kangkang Duan, 2022. "Machine Learning-Based Models for Shear Strength Prediction of UHPFRC Beams," Mathematics, MDPI, vol. 10(16), pages 1-26, August.
    20. Muhammad Majeed & Aqil Tariq & Muhammad Mushahid Anwar & Arshad Mahmood Khan & Fahim Arshad & Faisal Mumtaz & Muhammad Farhan & Lili Zhang & Aroosa Zafar & Marjan Aziz & Sanaullah Abbasi & Ghani Rahma, 2021. "Monitoring of Land Use–Land Cover Change and Potential Causal Factors of Climate Change in Jhelum District, Punjab, Pakistan, through GIS and Multi-Temporal Satellite Data," Land, MDPI, vol. 10(10), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1265-:d:882468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.