IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p130-d709585.html
   My bibliography  Save this article

Can System Log Data Enhance the Performance of Credit Scoring?—Evidence from an Internet Bank in Korea

Author

Listed:
  • Sunghyon Kyeong

    (Division of Big-Data Analytics, KakaoBank, Seongnam-si 13494, Korea)

  • Daehee Kim

    (Division of Big-Data Analytics, KakaoBank, Seongnam-si 13494, Korea)

  • Jinho Shin

    (Division of Research and Development, KakaoBank, Seongnam-si 13494, Korea)

Abstract

The credit scoring model is one of the most important decision-making tools for the sustainability of banking systems. This study is the first to examine whether it can be improved by using system log data that are stoed extensively for system operation. We used the log data recorded by the mobile application system of KakaoBank, a leading internet bank used by more than 14 million people in Korea. After generating candidate variables from KakaoBank’s log data, we created a credit scoring model by utilizing variables with high information values and logistic regression, the most common method for developing credit scoring models in financial institutions. To prove our hypothesis on the improvement of credit scoring model performance, we performed an independent sample t -test using the simulation results of repeated model development and performance measurement based on randomly sampled data. Consequently, the discrimination power of the proposed model using logistic regression (neural network) compared to the credit bureau-based model significantly improved by 1.84 (2.22) percentage points based on the Kolmogorov–Smirnov statistics. The results of this study suggest that a bank can utilize the accumulated log data inside the bank to improve decision-making systems, including credit scoring, at a low cost.

Suggested Citation

  • Sunghyon Kyeong & Daehee Kim & Jinho Shin, 2021. "Can System Log Data Enhance the Performance of Credit Scoring?—Evidence from an Internet Bank in Korea," Sustainability, MDPI, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:130-:d:709585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhichao Luo & Pingyu Hsu & Ni Xu, 2020. "SME Default Prediction Framework with the Effective Use of External Public Credit Data," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    3. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    4. Mehdi Khashei & Akram Mirahmadi, 2015. "A Soft Intelligent Risk Evaluation Model for Credit Scoring Classification," IJFS, MDPI, vol. 3(3), pages 1-12, September.
    5. Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
    2. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
    3. Wei Jie Yeo & Wihan van der Heever & Rui Mao & Erik Cambria & Ranjan Satapathy & Gianmarco Mengaldo, 2023. "A Comprehensive Review on Financial Explainable AI," Papers 2309.11960, arXiv.org.
    4. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    5. Dangxing Chen, 2023. "Can I Trust the Explanations? Investigating Explainable Machine Learning Methods for Monotonic Models," Papers 2309.13246, arXiv.org.
    6. Modina, Michele & Pietrovito, Filomena & Gallucci, Carmen & Formisano, Vincenzo, 2023. "Predicting SMEs’ default risk: Evidence from bank-firm relationship data," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 254-268.
    7. Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
    8. Sun, Weixin & Zhang, Xuantao & Li, Minghao & Wang, Yong, 2023. "Interpretable high-stakes decision support system for credit default forecasting," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    9. Al-Amin Abba Dabo & Amin Hosseinian-Far, 2023. "An Integrated Methodology for Enhancing Reverse Logistics Flows and Networks in Industry 5.0," Logistics, MDPI, vol. 7(4), pages 1-26, December.
    10. Õie Renata Siimon & Oliver Lukason, 2021. "A Decision Support System for Corporate Tax Arrears Prediction," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    11. Bastos, João A. & Matos, Sara M., 2022. "Explainable models of credit losses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
    12. Xin Xu & Feng Xiong & Zhe An, 2023. "Using Machine Learning to Predict Corporate Fraud: Evidence Based on the GONE Framework," Journal of Business Ethics, Springer, vol. 186(1), pages 137-158, August.
    13. Tang, Pan & Tang, Tiantian & Lu, Chennuo, 2024. "Predicting systemic financial risk with interpretable machine learning," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    14. Ivan Tikshaev & Roman Kulshin & Gennadii Volokitin & Pavel Senchenko & Anatoly Sidorov, 2022. "The Possibilities of Using Scoring to Determine the Relevance of Software Development Tenders," Mathematics, MDPI, vol. 10(24), pages 1-13, December.
    15. Miao Zhu & Ben-Chang Shia & Meng Su & Jialin Liu, 2024. "Consumer Default Risk Portrait: An Intelligent Management Framework of Online Consumer Credit Default Risk," Mathematics, MDPI, vol. 12(10), pages 1-19, May.
    16. Zhou, Ying & Li, Haoran & Xiao, Zhi & Qiu, Jing, 2023. "A user-centered explainable artificial intelligence approach for financial fraud detection," Finance Research Letters, Elsevier, vol. 58(PA).
    17. Pejman Peykani & Mostafa Sargolzaei & Mohammad Hashem Botshekan & Camelia Oprean-Stan & Amir Takaloo, 2023. "Optimization of Asset and Liability Management of Banks with Minimum Possible Changes," Mathematics, MDPI, vol. 11(12), pages 1-24, June.
    18. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    19. Frank Ranganai Matenda & Mabutho Sibanda, 2022. "Determinants of Default Probability for Audited and Unaudited SMEs under Stressed Conditions in Zimbabwe," Economies, MDPI, vol. 10(11), pages 1-28, November.
    20. John Martin & Sona Taheri & Mali Abdollahian, 2024. "Optimizing Ensemble Learning to Reduce Misclassification Costs in Credit Risk Scorecards," Mathematics, MDPI, vol. 12(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:130-:d:709585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.