IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5248-d550375.html
   My bibliography  Save this article

Review on Machine Learning Techniques for Developing Pavement Performance Prediction Models

Author

Listed:
  • Rita Justo-Silva

    (Research Centre for Territory, Transports and Environment, Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra, Portugal)

  • Adelino Ferreira

    (Research Centre for Territory, Transports and Environment, Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra, Portugal)

  • Gerardo Flintsch

    (Center for Sustainable Transportation Infrastructure, Virginia Tech Transportation Institute (VTTI), Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0131, USA)

Abstract

Road transportation has always been inherent in developing societies, impacting between 10–20% of Gross Domestic Product (GDP). It is responsible for personal mobility (access to services, goods, and leisure), and that is why world economies rely upon the efficient and safe functioning of transportation facilities. Road maintenance is vital since the need for maintenance increases as road infrastructure ages and is based on sustainability, meaning that spending money now saves much more in the future. Furthermore, road maintenance plays a significant role in road safety. However, pavement management is a challenging task because available budgets are limited. Road agencies need to set programming plans for the short term and the long term to select and schedule maintenance and rehabilitation operations. Pavement performance prediction models (PPPMs) are a crucial element in pavement management systems (PMSs), providing the prediction of distresses and, therefore, allowing active and efficient management. This work aims to review the modeling techniques that are commonly used in the development of these models. The pavement deterioration process is stochastic by nature. It requires complex deterministic or probabilistic modeling techniques, which will be presented here, as well as the advantages and disadvantages of each of them. Finally, conclusions will be drawn, and some guidelines to support the development of PPPMs will be proposed.

Suggested Citation

  • Rita Justo-Silva & Adelino Ferreira & Gerardo Flintsch, 2021. "Review on Machine Learning Techniques for Developing Pavement Performance Prediction Models," Sustainability, MDPI, vol. 13(9), pages 1-27, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5248-:d:550375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5248/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5248/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Diggle & M. G. Kenward, 1994. "Informative Drop‐Out in Longitudinal Data Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 49-73, March.
    2. Ramin Moghaddass & Ming J Zuo & Yu Liu & Hong-zhong Huang, 2015. "Predictive analytics using a nonhomogeneous semi-Markov model and inspection data," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 505-520, May.
    3. Durango-Cohen, Pablo L., 2007. "A time series analysis framework for transportation infrastructure management," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 493-505, June.
    4. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    5. Kamal Golabi & Ram B. Kulkarni & George B. Way, 1982. "A Statewide Pavement Management System," Interfaces, INFORMS, vol. 12(6), pages 5-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Baldo & Matteo Miani & Fabio Rondinella & Clara Celauro, 2021. "A Machine Learning Approach to Determine Airport Asphalt Concrete Layer Moduli Using Heavy Weight Deflectometer Data," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    2. Cuthbert Ruseruka & Judith Mwakalonge & Gurcan Comert & Saidi Siuhi & Frank Ngeni & Kristin Major, 2023. "Pavement Distress Identification Based on Computer Vision and Controller Area Network (CAN) Sensor Models," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    3. Nazmus Sakib Ahmed & Nathan Huynh & Sarah Gassman & Robert Mullen & Charles Pierce & Yuche Chen, 2022. "Predicting Pavement Structural Condition Using Machine Learning Methods," Sustainability, MDPI, vol. 14(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sathaye, Nakul & Madanat, Samer, 2011. "A bottom-up solution for the multi-facility optimal pavement resurfacing problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1004-1017, August.
    2. Chu, Chih-Yuan & Durango-Cohen, Pablo L., 2008. "Estimation of dynamic performance models for transportation infrastructure using panel data," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 57-81, January.
    3. Seyedshohadaie, S. Reza & Damnjanovic, Ivan & Butenko, Sergiy, 2010. "Risk-based maintenance and rehabilitation decisions for transportation infrastructure networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 236-248, May.
    4. Gu, Weihua & Ouyang, Yanfeng & Madanat, Samer, 2012. "Joint optimization of pavement maintenance and resurfacing planning," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 511-519.
    5. Zhang, Le & Fu, Liangliang & Gu, Weihua & Ouyang, Yanfeng & Hu, Yaohua, 2017. "A general iterative approach for the system-level joint optimization of pavement maintenance, rehabilitation, and reconstruction planning," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 378-400.
    6. David M. Murray & Jonathan L. Blitstein, 2003. "Methods To Reduce The Impact Of Intraclass Correlation In Group-Randomized Trials," Evaluation Review, , vol. 27(1), pages 79-103, February.
    7. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    8. Tomoya Mori & Daisuke Murakami, 2025. "Sustainability of cities under declining population and decreasing distance frictions: The case of Japan," KIER Working Papers 1117, Kyoto University, Institute of Economic Research.
    9. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    10. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    11. Patrick E. B. FitzGerald, 2002. "Extended Generalized Estimating Equations for Binary Familial Data with Incomplete Families," Biometrics, The International Biometric Society, vol. 58(4), pages 718-726, December.
    12. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    13. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    14. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    15. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    16. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    17. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    18. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    19. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    20. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5248-:d:550375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.