IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p777-d480593.html
   My bibliography  Save this article

Development of Models for Children—Pedestrian Crossing Speed at Signalized Crosswalks

Author

Listed:
  • Irena Ištoka Otković

    (Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia)

  • Aleksandra Deluka-Tibljaš

    (Faculty of Civil Engineering, University of Rijeka, 51 000 Rijeka, Croatia)

  • Sanja Šurdonja

    (Faculty of Civil Engineering, University of Rijeka, 51 000 Rijeka, Croatia)

  • Tiziana Campisi

    (Faculty of Engineering and Architecture, University of Enna KORE, 94100 Enna, Italy)

Abstract

Modeling the behavior of pedestrians is an important tool in the analysis of their behavior and consequently ensuring the safety of pedestrian traffic. Children pedestrians show specific traffic behavior which is related to cognitive development, and the parameters that affect their traffic behavior are very different. The aim of this paper is to develop a model of the children-pedestrian’s speed at a signalized pedestrian crosswalk. For the same set of data collected in the city of Osijek—Croatia, two models were developed based on neural network and multiple linear regression. In both cases the models are based on 300 data of measured children speed at signalized pedestrian crosswalks on primary city roads located near a primary school. As parameters, both models include the selected traffic infrastructure features and children’s characteristics and their movements. The models are validated on data collected on the same type of pedestrian crosswalks, using the same methodology in two other urban environments—the city of Rijeka, Croatia and Enna in Italy. It was shown that the neural network model, developed for Osijek, can be applied with sufficient reliability to the other two cities, while the multiple linear regression model is applicable with relatively satisfactory reliability only in Rijeka. A comparative analysis of the statistical indicators of reliability of these two models showed that better results are achieved by the neural network model.

Suggested Citation

  • Irena Ištoka Otković & Aleksandra Deluka-Tibljaš & Sanja Šurdonja & Tiziana Campisi, 2021. "Development of Models for Children—Pedestrian Crossing Speed at Signalized Crosswalks," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:777-:d:480593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chiara Gruden & Irena Ištoka Otković & Matjaž Šraml, 2020. "Neural Networks Applied to Microsimulation: A Prediction Model for Pedestrian Crossing Time," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    2. Ivan Blečić & Tanja Congiu & Giovanna Fancello & Giuseppe Andrea Trunfio, 2020. "Planning and Design Support Tools for Walkability: A Guide for Urban Analysts," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    3. Benedikt Schwab & Christof Beil & Thomas H. Kolbe, 2020. "Spatio-Semantic Road Space Modeling for Vehicle–Pedestrian Simulation to Test Automated Driving Systems," Sustainability, MDPI, vol. 12(9), pages 1-25, May.
    4. Tiziana Campisi & Socrates Basbas & Giovanni Tesoriere & Mirto Trouva & Thomas Papas & Iva Mrak, 2020. "How to Create Walking Friendly Cities. A Multi-Criteria Analysis of the Central Open Market Area of Rijeka," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Szagała & Piotr Olszewski & Witold Czajewski & Paweł Dąbkowski, 2021. "Active Signage of Pedestrian Crossings as a Tool in Road Safety Management," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    2. Irena Ištoka Otković & Barbara Karleuša & Aleksandra Deluka-Tibljaš & Sanja Šurdonja & Mario Marušić, 2021. "Combining Traffic Microsimulation Modeling and Multi-Criteria Analysis for Sustainable Spatial-Traffic Planning," Land, MDPI, vol. 10(7), pages 1-26, June.
    3. Chiara Gruden & Irena Ištoka Otković & Matjaž Šraml, 2021. "Safety Analysis of Young Pedestrian Behavior at Signalized Intersections: An Eye-Tracking Study," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    4. Marie-Soleil Cloutier & Mojgan Rafiei & Lambert Desrosiers-Gaudette & Zeinab AliYas, 2022. "An Examination of Child Pedestrian Rule Compliance at Crosswalks around Parks in Montreal, Canada," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    5. Malik Sarmad Riaz & Ariane Cuenen & Evelien Polders & Muhammad Bilal Akram & Moustafa Houda & Davy Janssens & Marc Azab, 2022. "Child Pedestrian Safety: Study of Street-Crossing Behaviour of Primary School Children with Adult Supervision," Sustainability, MDPI, vol. 14(3), pages 1-15, January.
    6. Li, Weigang & Liu, Jian, 2023. "Analysis of the evolution of pedestrian crossing based on dynamic penalty mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irena Ištoka Otković & Barbara Karleuša & Aleksandra Deluka-Tibljaš & Sanja Šurdonja & Mario Marušić, 2021. "Combining Traffic Microsimulation Modeling and Multi-Criteria Analysis for Sustainable Spatial-Traffic Planning," Land, MDPI, vol. 10(7), pages 1-26, June.
    2. Judith Schröder & Susanne Moebus & Julita Skodra, 2022. "Selected Research Issues of Urban Public Health," IJERPH, MDPI, vol. 19(9), pages 1-28, May.
    3. Javier Velázquez & Javier Infante & Inmaculada Gómez & Ana Hernando & Derya Gülçin & Fernando Herráez & Víctor Rincón & Rui Alexandre Castanho, 2023. "Walkability under Climate Pressure: Application to Three UNESCO World Heritage Cities in Central Spain," Land, MDPI, vol. 12(5), pages 1-28, April.
    4. Yibang Zhang & Yukun Zou & Zhenjun Zhu & Xiucheng Guo & Xin Feng, 2022. "Evaluating Pedestrian Environment Using DeepLab Models Based on Street Walkability in Small and Medium-Sized Cities: Case Study in Gaoping, China," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    5. Li, Weigang & Liu, Jian, 2023. "Analysis of the evolution of pedestrian crossing based on dynamic penalty mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    6. Mohammad Paydar & Asal Kamani Fard & Mohammad Mehdi Khaghani, 2020. "Walking toward Metro Stations: the Contribution of Distance, Attitudes, and Perceived Built Environment," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    7. Ginevra Balletto & Mara Ladu & Alessandra Milesi & Giuseppe Borruso, 2021. "A Methodological Approach on Disused Public Properties in the 15-Minute City Perspective," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    8. Anna Visvizi & Shahira Assem Abdel-Razek & Roman Wosiek & Radosław Malik, 2021. "Conceptualizing Walking and Walkability in the Smart City through a Model Composite w 2 Smart City Utility Index," Energies, MDPI, vol. 14(23), pages 1-20, December.
    9. Ali Qazimirsaeed & Hanie Khosravi & Mojtaba Rafieian & Hamid Mirzahossein & Carmen Forciniti, 2022. "Walkability Policies in Developing Countries: What Do People Need and Prefer in Iran?," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    10. Fancello, Giovanna & Congiu, Tanja & Tsoukiàs, Alexis, 2020. "Mapping walkability. A subjective value theory approach," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    11. Suprava Chakraborty & Nallapaneni Manoj Kumar & Arunkumar Jayakumar & Santanu Kumar Dash & Devaraj Elangovan, 2021. "Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions," Sustainability, MDPI, vol. 13(22), pages 1-31, November.
    12. Karolina Dudzic-Gyurkovich, 2023. "Study of Centrality Measures in the Network of Green Spaces in the City of Krakow," Sustainability, MDPI, vol. 15(18), pages 1-30, September.
    13. Olga Tzanni & Paraskevas Nikolaou & Stella Giannakopoulou & Apostolos Arvanitis & Socrates Basbas, 2022. "Social Dimensions of Spatial Justice in the Use of the Public Transport System in Thessaloniki, Greece," Land, MDPI, vol. 11(11), pages 1-26, November.
    14. Soongbong Lee & Myungjoo Han & Kyoungah Rhee & Bumjoon Bae, 2021. "Identification of Factors Affecting Pedestrian Satisfaction toward Land Use and Street Type," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    15. Loo, Becky P.Y., 2021. "Walking towards a happy city," Journal of Transport Geography, Elsevier, vol. 93(C).
    16. Daniela Santilli & Mauro D’Apuzzo & Azzurra Evangelisti & Vittorio Nicolosi, 2021. "Towards Sustainability: New Tools for Planning Urban Pedestrian Mobility," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    17. Elżbieta Macioszek & Ali Karami & Iman Farzin & Mohammadhossein Abbasi & Amir Reza Mamdoohi & Cristiana Piccioni, 2022. "The Effect of Distance Intervals on Walking Likelihood in Different Trip Purposes," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    18. Jingyi Dong & Jun Zhang & Xudong Yang, 2023. "How Does the Living Street Environment in the Old Urban Districts Affect Walking Behavior? A General Multi-Factor Framework," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    19. Laura Eboli & Carmen Forciniti & Gabriella Mazzulla & Maria Grazia Bellizzi, 2023. "Establishing Performance Criteria for Evaluating Pedestrian Environments," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    20. Jihwan Yoon & Jaeyoul Chun & Hyunsoo Kim, 2020. "Investigating the Relation between Walkability and the Changes in Pedestrian Policy through Wearable Sensing," Sustainability, MDPI, vol. 12(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:777-:d:480593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.