IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p14056-d706632.html
   My bibliography  Save this article

Towards Good Governance on Dual-Use Biotechnology for Global Sustainable Development

Author

Listed:
  • Yang Xue

    (Law School, Tianjin University, Tianjin 300072, China
    Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China)

  • Hanzhi Yu

    (School of Public Affairs, Zhejiang University, Hangzhou 310058, China)

  • Geng Qin

    (School of Public Affairs, Zhejiang University, Hangzhou 310058, China)

Abstract

Dual-use biotechnology faces the risks of availability, novel biological agents, knowledge, normative, and other dual-use risks. If left unchecked, these may destroy human living conditions and social order. Despite the benefits of dual-use technology, good governance is needed to mitigate its risks. The predicaments facing all governments in managing the dual-use risks of biotechnology deserve special attention. On the one hand, the information asymmetry risk of dual-use biotechnology prevents the traditional self-governance model in the field of biotechnology from playing its role. On the other hand, top-down public regulation often lags behind technological iteration due to the difficulty of predicting the human-made risks of dual-use biotechnology. Therefore, we argue that governance of the dual-use risks of biotechnology should avoid the traditional bottom-up or top-down modes. We suggest the governance for dual-use biotechnology could be improved if the four-stage experimentalist governance model is followed. The first stage is to achieve consensus on a broad governance framework with open-ended principles. The second stage is for countries to take action based on local conditions and the open-ended framework. The third stage is to establish a dynamic consultation mechanism for transnational information sharing and action review. The fourth and final stage is to evaluate and revise the global governance framework.

Suggested Citation

  • Yang Xue & Hanzhi Yu & Geng Qin, 2021. "Towards Good Governance on Dual-Use Biotechnology for Global Sustainable Development," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:14056-:d:706632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/14056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/14056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brendan Maher, 2012. "Bird-flu research: The biosecurity oversight," Nature, Nature, vol. 485(7399), pages 431-434, May.
    2. Masaki Imai & Tokiko Watanabe & Masato Hatta & Subash C. Das & Makoto Ozawa & Kyoko Shinya & Gongxun Zhong & Anthony Hanson & Hiroaki Katsura & Shinji Watanabe & Chengjun Li & Eiryo Kawakami & Shinya , 2012. "Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets," Nature, Nature, vol. 486(7403), pages 420-428, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya-Feng Zhang & Tara Qian Sun, 2022. "The Interaction of Biotechnology and Institution: A Stakeholder Perspective," Sustainability, MDPI, vol. 14(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kshitij Wagh & Aatish Bhatia & Benjamin D Greenbaum & Gyan Bhanot, 2014. "Bird to Human Transmission Biases and Vaccine Escape Mutants in H5N1 Infections," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    2. Mansour Ebrahimi & Parisa Aghagolzadeh & Narges Shamabadi & Ahmad Tahmasebi & Mohammed Alsharifi & David L Adelson & Farhid Hemmatzadeh & Esmaeil Ebrahimie, 2014. "Understanding the Underlying Mechanism of HA-Subtyping in the Level of Physic-Chemical Characteristics of Protein," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-14, May.
    3. Mutsaers, Inge, 2015. "One-health approach as counter-measure against “autoimmune” responses in biosecurity," Social Science & Medicine, Elsevier, vol. 129(C), pages 123-130.
    4. Keng Boon Wee & Raphael Tze Chuen Lee & Jing Lin & Zacharias Aloysius Dwi Pramono & Sebastian Maurer-Stroh, 2016. "Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-24, January.
    5. George J Milne & Nilimesh Halder & Joel K Kelso, 2013. "The Cost Effectiveness of Pandemic Influenza Interventions: A Pandemic Severity Based Analysis," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    6. Ahmed Kandeil & Christopher Patton & Jeremy C. Jones & Trushar Jeevan & Walter N. Harrington & Sanja Trifkovic & Jon P. Seiler & Thomas Fabrizio & Karlie Woodard & Jasmine C. Turner & Jeri-Carol Crump, 2023. "Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Oskar Staufer & Gösta Gantner & Ilia Platzman & Klaus Tanner & Imre Berger & Joachim P. Spatz, 2022. "Bottom-up assembly of viral replication cycles," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Katherine A. Amato & Luis A. Haddock & Katarina M. Braun & Victoria Meliopoulos & Brandi Livingston & Rebekah Honce & Grace A. Schaack & Emma Boehm & Christina A. Higgins & Gabrielle L. Barry & Katia , 2022. "Influenza A virus undergoes compartmentalized replication in vivo dominated by stochastic bottlenecks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Laura Matrajt & M Elizabeth Halloran & Ira M Longini Jr, 2013. "Optimal Vaccine Allocation for the Early Mitigation of Pandemic Influenza," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-15, March.
    11. Sarah C Kramer & Sen Pei & Jeffrey Shaman, 2020. "Forecasting influenza in Europe using a metapopulation model incorporating cross-border commuting and air travel," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:14056-:d:706632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.