IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38415-7.html
   My bibliography  Save this article

Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America

Author

Listed:
  • Ahmed Kandeil

    (St. Jude Children’s Research Hospital
    National Research Centre)

  • Christopher Patton

    (St. Jude Children’s Research Hospital
    University of Tennessee Health Science Center)

  • Jeremy C. Jones

    (St. Jude Children’s Research Hospital)

  • Trushar Jeevan

    (St. Jude Children’s Research Hospital)

  • Walter N. Harrington

    (St. Jude Children’s Research Hospital)

  • Sanja Trifkovic

    (St. Jude Children’s Research Hospital)

  • Jon P. Seiler

    (St. Jude Children’s Research Hospital)

  • Thomas Fabrizio

    (St. Jude Children’s Research Hospital)

  • Karlie Woodard

    (St. Jude Children’s Research Hospital)

  • Jasmine C. Turner

    (St. Jude Children’s Research Hospital)

  • Jeri-Carol Crumpton

    (St. Jude Children’s Research Hospital)

  • Lance Miller

    (St. Jude Children’s Research Hospital)

  • Adam Rubrum

    (St. Jude Children’s Research Hospital)

  • Jennifer DeBeauchamp

    (St. Jude Children’s Research Hospital)

  • Charles J. Russell

    (St. Jude Children’s Research Hospital)

  • Elena A. Govorkova

    (St. Jude Children’s Research Hospital)

  • Peter Vogel

    (St. Jude Children’s Research Hospital)

  • Mia Kim-Torchetti

    (US Department of Agriculture (USDA))

  • Yohannes Berhane

    (National Centre for Foreign Animal Disease
    University of Manitoba)

  • David Stallknecht

    (The University of Georgia)

  • Rebecca Poulson

    (The University of Georgia)

  • Lisa Kercher

    (St. Jude Children’s Research Hospital)

  • Richard J. Webby

    (St. Jude Children’s Research Hospital
    University of Tennessee Health Science Center)

Abstract

Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants.

Suggested Citation

  • Ahmed Kandeil & Christopher Patton & Jeremy C. Jones & Trushar Jeevan & Walter N. Harrington & Sanja Trifkovic & Jon P. Seiler & Thomas Fabrizio & Karlie Woodard & Jasmine C. Turner & Jeri-Carol Crump, 2023. "Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38415-7
    DOI: 10.1038/s41467-023-38415-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38415-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38415-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masaki Imai & Tokiko Watanabe & Masato Hatta & Subash C. Das & Makoto Ozawa & Kyoko Shinya & Gongxun Zhong & Anthony Hanson & Hiroaki Katsura & Shinji Watanabe & Chengjun Li & Eiryo Kawakami & Shinya , 2012. "Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets," Nature, Nature, vol. 486(7403), pages 420-428, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Kshitij Wagh & Aatish Bhatia & Benjamin D Greenbaum & Gyan Bhanot, 2014. "Bird to Human Transmission Biases and Vaccine Escape Mutants in H5N1 Infections," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    3. Oskar Staufer & Gösta Gantner & Ilia Platzman & Klaus Tanner & Imre Berger & Joachim P. Spatz, 2022. "Bottom-up assembly of viral replication cycles," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Mansour Ebrahimi & Parisa Aghagolzadeh & Narges Shamabadi & Ahmad Tahmasebi & Mohammed Alsharifi & David L Adelson & Farhid Hemmatzadeh & Esmaeil Ebrahimie, 2014. "Understanding the Underlying Mechanism of HA-Subtyping in the Level of Physic-Chemical Characteristics of Protein," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-14, May.
    5. Katherine A. Amato & Luis A. Haddock & Katarina M. Braun & Victoria Meliopoulos & Brandi Livingston & Rebekah Honce & Grace A. Schaack & Emma Boehm & Christina A. Higgins & Gabrielle L. Barry & Katia , 2022. "Influenza A virus undergoes compartmentalized replication in vivo dominated by stochastic bottlenecks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Mutsaers, Inge, 2015. "One-health approach as counter-measure against “autoimmune” responses in biosecurity," Social Science & Medicine, Elsevier, vol. 129(C), pages 123-130.
    7. Laura Matrajt & M Elizabeth Halloran & Ira M Longini Jr, 2013. "Optimal Vaccine Allocation for the Early Mitigation of Pandemic Influenza," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-15, March.
    8. Yang Xue & Hanzhi Yu & Geng Qin, 2021. "Towards Good Governance on Dual-Use Biotechnology for Global Sustainable Development," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    9. Keng Boon Wee & Raphael Tze Chuen Lee & Jing Lin & Zacharias Aloysius Dwi Pramono & Sebastian Maurer-Stroh, 2016. "Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-24, January.
    10. George J Milne & Nilimesh Halder & Joel K Kelso, 2013. "The Cost Effectiveness of Pandemic Influenza Interventions: A Pandemic Severity Based Analysis," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    11. Sarah C Kramer & Sen Pei & Jeffrey Shaman, 2020. "Forecasting influenza in Europe using a metapopulation model incorporating cross-border commuting and air travel," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-21, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38415-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.