IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13934-d704280.html
   My bibliography  Save this article

Towards Nearly-Zero Energy in Heritage Residential Buildings Retrofitting in Hot, Dry Climates

Author

Listed:
  • Hanan S. S. Ibrahim

    (Sustainable Architecture and Urbanism Lab, Department of BATir, School of Engineering (EPB), Free University of Brussels/Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
    Department of Architectural Engineering, Faculty of Engineering and Technology, Future University in Egypt (FUE), Cairo 11835, Egypt)

  • Ahmed Z. Khan

    (Sustainable Architecture and Urbanism Lab, Department of BATir, School of Engineering (EPB), Free University of Brussels/Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

  • Yehya Serag

    (Department of Architectural Engineering, Faculty of Engineering and Technology, Future University in Egypt (FUE), Cairo 11835, Egypt)

  • Shady Attia

    (Sustainable Building Design (SBD) Lab, Department of UEE, Faculty of Applied Sciences, University of Liège, 4000 Liège, Belgium)

Abstract

Retrofitting “nearly-zero energy” heritage buildings has always been controversial, due to the usual association of the “nearly-zero energy” target with high energy performance and the utilization of renewable energy sources in highly regarded cultural values of heritage buildings. This paper aims to evaluate the potential of turning heritage building stock into a “nearly-zero energy” in hot, dry climates, which has been addressed in only a few studies. Therefore, a four-phase integrated energy retrofitting methodology was proposed and applied to a sample of heritage residential building stock in Egypt along with microscale analysis on buildings. Three reference buildings were selected, representing the most dominant building typologies. The study combines field measurements and observations with energy simulations. In addition, simulation models were created and calibrated based on monitored data in the reference buildings. The results show that the application of hybrid passive and active non-energy generating scenarios significantly impacts energy use in the reference buildings, e.g., where 66.4% of annual electricity use can be saved. Moreover, the application of solar energy sources approximately covers the energy demand in the reference buildings, e.g., where an annual self-consumption of electricity up to 78% and surplus electricity up to 20.4% can be achieved by using photo-voltaic modules. Furthermore, annual natural gas of up to 66.8% can be saved by using two unglazed solar collectors. Lastly, achieving “nearly-zero energy” was possible for the presented case study area. The originality of this work lies in developing and applying an informed retrofitting (nearly-zero energy) guide to be used as a benchmark energy model for buildings that belong to an important historical era. The findings contribute to fill a gap in existing studies of integrating renewable energy sources to achieve “nearly-zero energy” in heritage buildings in hot climates.

Suggested Citation

  • Hanan S. S. Ibrahim & Ahmed Z. Khan & Yehya Serag & Shady Attia, 2021. "Towards Nearly-Zero Energy in Heritage Residential Buildings Retrofitting in Hot, Dry Climates," Sustainability, MDPI, vol. 13(24), pages 1-36, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13934-:d:704280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13934/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13934/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Hoare, Cathal & Purcell, Karl & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings," Applied Energy, Elsevier, vol. 267(C).
    2. Cho, Hyun Mi & Yun, Beom Yeol & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building," Applied Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yongjie & Huang, Zhiwu & Wu, Yue & Yan, Lisen & Jiang, Fu & Peng, Jun, 2022. "An online hybrid estimation method for core temperature of Lithium-ion battery with model noise compensation," Applied Energy, Elsevier, vol. 327(C).
    2. Abdullahi Ahmed & Monica Mateo-Garcia & Andrew Arewa & Kassim Caratella, 2021. "Integrated Performance Optimization of Higher Education Buildings Using Low-Energy Renovation Process and User Engagement," Energies, MDPI, vol. 14(5), pages 1-21, March.
    3. Lai, Yuan & Papadopoulos, Sokratis & Fuerst, Franz & Pivo, Gary & Sagi, Jacob & Kontokosta, Constantine E., 2022. "Building retrofit hurdle rates and risk aversion in energy efficiency investments," Applied Energy, Elsevier, vol. 306(PB).
    4. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    5. Georgios Tsoumanis & João Formiga & Nuno Bilo & Panagiotis Tsarchopoulos & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "The Smart Evolution of Historical Cities: Integrated Innovative Solutions Supporting the Energy Transition while Respecting Cultural Heritage," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    6. Jeeyoung Lim & Joseph J. Kim & Sunkuk Kim, 2021. "A Holistic Review of Building Energy Efficiency and Reduction Based on Big Data," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    7. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Cristina Piselli & Alessio Guastaveglia & Jessica Romanelli & Franco Cotana & Anna Laura Pisello, 2020. "Facility Energy Management Application of HBIM for Historical Low-Carbon Communities: Design, Modelling and Operation Control of Geothermal Energy Retrofit in a Real Italian Case Study," Energies, MDPI, vol. 13(23), pages 1-18, December.
    9. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    10. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    11. Nikolaos Ziozas & Angeliki Kitsopoulou & Evangelos Bellos & Petros Iliadis & Dimitra Gonidaki & Komninos Angelakoglou & Nikolaos Nikolopoulos & Silvia Ricciuti & Diego Viesi, 2024. "Energy Performance Analysis of the Renovation Process in an Italian Cultural Heritage Building," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    12. Yupei Lai & Yutong Li & Xinyi Feng & Tao Ma, 2022. "Green retrofit of existing residential buildings in China: An investigation on residents’ perceptions," Energy & Environment, , vol. 33(2), pages 332-353, March.
    13. Atinafu, Dimberu G. & Wi, Seunghwan & Yun, Beom Yeol & Kim, Sumin, 2021. "Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage," Energy, Elsevier, vol. 216(C).
    14. Guorui Chen & Li Cheng & Foyuan Li, 2022. "Integrating Sustainability and Users’ Demands in the Retrofit of a University Campus in China," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    15. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    16. Marek Borowski, 2022. "Hotel Adapted to the Requirements of an nZEB Building—Thermal Energy Performance and Assessment of Energy Retrofit Plan," Energies, MDPI, vol. 15(17), pages 1-17, August.
    17. Simon Wenninger & Christian Wiethe, 2021. "Benchmarking Energy Quantification Methods to Predict Heating Energy Performance of Residential Buildings in Germany," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(3), pages 223-242, June.
    18. Cho, Hyun Mi & Yun, Beom Yeol & Kim, Young Uk & Yuk, Hyeonseong & Kim, Sumin, 2022. "Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure i," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Neale, John & Shamsi, Mohammad Haris & Mangina, Eleni & Finn, Donal & O’Donnell, James, 2022. "Accurate identification of influential building parameters through an integration of global sensitivity and feature selection techniques," Applied Energy, Elsevier, vol. 315(C).
    20. Riccardo Camboni & Alberto Corsini & Raffaele Miniaci & Paola Valbonesi, 2023. "CO2 emissions reduction from residential buildings: cost estimate and policy design," "Marco Fanno" Working Papers 0304, Dipartimento di Scienze Economiche "Marco Fanno".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13934-:d:704280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.