IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13906-d703783.html
   My bibliography  Save this article

Hubs for Circularity: Geo-Based Industrial Clustering towards Urban Symbiosis in Europe

Author

Listed:
  • Francisco Mendez Alva

    (Energy & Cluster Management-EELAB, Department of Electromechanical, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Ghent Science Park Campus A, Technolo-giepark-Zwijnaarde 131, 9052 Ghent, Belgium)

  • Rob De Boever

    (Energy & Cluster Management-EELAB, Department of Electromechanical, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Ghent Science Park Campus A, Technolo-giepark-Zwijnaarde 131, 9052 Ghent, Belgium)

  • Greet Van Eetvelde

    (Energy & Cluster Management-EELAB, Department of Electromechanical, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Tech Lane Ghent Science Park Campus A, Technolo-giepark-Zwijnaarde 131, 9052 Ghent, Belgium)

Abstract

Since the Green Deal, ambitious climate and resource neutrality goals have been set in Europe. Here, process industries hold a unique position due to their energy and material transformation capabilities. They are encouraged to develop cross-sectorial hubs for achieving not only climate ambition, but also joining a circular economy through urban–industrial symbiosis with both business and community stakeholders. This research proposes a data-based approach to identify potential hub locations by means of cluster analysis. A total of three different algorithms are compared on a set of location and pollution data of European industrial facilities: K-means, hierarchical agglomerative and density-based spatial clustering. The DBSCAN algorithm gave the best indication of potential locations for hubs because of its capacity to tune the main parameters. It evidenced that predominately west European countries have a high potential for identifying hubs for circularity (H4Cs) due to their industrial density. In Eastern Europe, the industrial landscape is more scattered, suggesting that additional incentives might be needed to develop H4Cs. Furthermore, industrial activities such as the production of aluminium, cement, lime, plaster, or electricity are observed to have a relatively lower tendency to cluster compared with the petrochemical sector. Finally, further lines of research to identify and develop industrial H4Cs are suggested.

Suggested Citation

  • Francisco Mendez Alva & Rob De Boever & Greet Van Eetvelde, 2021. "Hubs for Circularity: Geo-Based Industrial Clustering towards Urban Symbiosis in Europe," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13906-:d:703783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Rachel Lombardi & Peter Laybourn, 2012. "Redefining Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 28-37, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlotta D’Alessandro & Antonio Licastro & Roberta Arbolino & Grazia Calabrò & Giuseppe Ioppolo, 2025. "A Circular Land Use Model for Reconciling Industrial Expansion with Agricultural Heritage in Italian Industrial Parks," Sustainability, MDPI, vol. 17(19), pages 1-16, October.
    2. Onofrio Resta & Emanuela Resta & Alberto Costantiello & Piergiuseppe Liuzzi & Angelo Leogrande, 2025. "Environmental Complexity and Respiratory Health: A Data-Driven Exploration Across European Regions," Working Papers hal-05243548, HAL.
    3. Tanya Tsui & Cecilia Furlan & Alexander Wandl & Arjan Timmeren, 2024. "Spatial Parameters for Circular Construction Hubs: Location Criteria for a Circular Built Environment," Circular Economy and Sustainability, Springer, vol. 4(1), pages 317-338, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    2. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability, Springer, vol. 1(2), pages 507-523, September.
    3. Fortuna, Lorena M. & Diyamandoglu, Vasil, 2015. "NYC WasteMatch – An online facilitated materials exchange as a tool for pollution prevention," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 122-131.
    4. João Pinto & Rui Boavida-Dias & Henrique A. Matos & João Azevedo, 2022. "Analysis of the Food Loss and Waste Valorisation of Animal By-Products from the Retail Sector," Sustainability, MDPI, vol. 14(5), pages 1-27, February.
    5. Cristina Maranesi & Pietro De Giovanni, 2020. "Modern Circular Economy: Corporate Strategy, Supply Chain, and Industrial Symbiosis," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    6. Kokoulina, L. & Ermolaeva, L., 2016. "Championing processes and the emergence of industrial symbiosis: Case of Yandex data center in Finland," Working Papers 6446, Graduate School of Management, St. Petersburg State University.
    7. Daniela C. A. Pigosso & Andreas Schmiegelow & Maj Munch Andersen, 2018. "Measuring the Readiness of SMEs for Eco-Innovation and Industrial Symbiosis: Development of a Screening Tool," Sustainability, MDPI, vol. 10(8), pages 1-25, August.
    8. Emilia Faria & Cristiane Barreto & Armando Caldeira-Pires & Jorge Alfredo Cerqueira Streit & Patricia Guarnieri, 2023. "Brazilian Circular Economy Pilot Project: Integrating Local Stakeholders’ Perception and Social Context in Industrial Symbiosis Analyses," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    9. Haradhan Kumar MOHAJAN, 2020. "Circular Economy can Provide a Sustainable Global Society," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 9(3), pages 38-62, September.
    10. Yang Liu & Peng Cheng & Li Hu, 2022. "How do justice and top management beliefs matter in industrial symbiosis collaboration: An exploratory study from China," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 891-906, June.
    11. Rachelle LeBlanc & Carole Tranchant & Yves Gagnon & Raymond Côté, 2016. "Potential for Eco-Industrial Park Development in Moncton, New Brunswick (Canada): A Comparative Analysis," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    12. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    13. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    14. Michael Martin & Sofia Poulikidou & Elvira Molin, 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    15. Aid, Graham & Eklund, Mats & Anderberg, Stefan & Baas, Leenard, 2017. "Expanding roles for the Swedish waste management sector in inter-organizational resource management," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 85-97.
    16. Lovisa Harfeldt-Berg & Sarah Broberg & Karin Ericsson, 2022. "The Importance of Individual Actor Characteristics and Contextual Aspects for Promoting Industrial Symbiosis Networks," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    17. Mollica, Melissa & Fraccascia, Luca & Nastasi, Alberto, 2025. "What drives the success of online platforms for industrial symbiosis? An agent-based model," Ecological Economics, Elsevier, vol. 230(C).
    18. Belén Payán‐Sánchez & José Antonio Plaza‐Úbeda & Miguel Pérez‐Valls & Eva Carmona‐Moreno, 2018. "Social Embeddedness for Sustainability in the Aviation Sector," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 25(4), pages 537-553, July.
    19. Sergio Barile & Clara Bassano & Raffaele D’Amore & Paolo Piciocchi & Marialuisa Saviano & Pietro Vito, 2021. "Insights of Digital Transformation Processes in Industrial Symbiosis from the Viable Systems Approach ( vSa )," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    20. Gabriela PICIU, 2019. "Promoting The Use Of The Circular Model And Its Relevance To Business," Contemporary Economy Journal, Constantin Brancoveanu University, vol. 4(4), pages 70-79.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13906-:d:703783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.