IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12549-d678451.html
   My bibliography  Save this article

An Investigation on Shenzhen Urban Green Space Changes and Their Effect on Local Eco-Environment in Recent Decades

Author

Listed:
  • Yue Liu

    (Key Laboratory of Urban Land Resources Monitoring and Simulation, MNR, Shenzhen 518034, China
    State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Hui Li

    (School of Earth Sciences, China University of Geosciences, Wuhan 430074, China)

  • Chang Li

    (Three Gorges Research Center for Geo-Hazard, Ministry of Education, China University of Geosciences, Wuhan 430074, China)

  • Cheng Zhong

    (Three Gorges Research Center for Geo-Hazard, Ministry of Education, China University of Geosciences, Wuhan 430074, China)

  • Xueye Chen

    (Key Laboratory of Urban Land Resources Monitoring and Simulation, MNR, Shenzhen 518034, China)

Abstract

Rapid urbanization and population growth impact enormous pressures on urban natural, economic and social environments. The quantitative analysis of urban green space (UGS) landscape dynamics and their impact on the urban eco-environment is of great significance for urban planning and eco-environment protection. Taking Shenzhen as an example, the UGS landscape changes and their impact on urban heat islands (UHI), surface wetness, air pollution and carbon storage were comprehensively investigated with Landsat and MODIS images. Results showed a large number of lands transferring from UGS to non-UGS from 1978 to 2018, especially for cropland. Built-up regions have adverse influences on eco-environment factors, and then they suffer high SUHI and AOD and low humidity and carbon storage. The growth of built-up areas not only enlarges the area of SUHI, but also enhances the intensity of heat islands. On the contrary, UGS patches have beneficial influences on all eco-environment factors and then enjoy a better eco-environment, including low SUHII, high surface wetness, high carbon storage and low AOD. It is expected that this study could provide scientific support for UGS plans and for conserving and sustainable urban development for developing cities.

Suggested Citation

  • Yue Liu & Hui Li & Chang Li & Cheng Zhong & Xueye Chen, 2021. "An Investigation on Shenzhen Urban Green Space Changes and Their Effect on Local Eco-Environment in Recent Decades," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12549-:d:678451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12549/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12549/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kabila Abass & Kwadwo Afriyie & Razak M. Gyasi, 2019. "From green to grey: the dynamics of land use/land cover change in urban Ghana," Landscape Research, Taylor & Francis Journals, vol. 44(8), pages 909-921, November.
    2. Lin Ding & Zhenfeng Shao & Hanchao Zhang & Cong Xu & Dewen Wu, 2016. "A Comprehensive Evaluation of Urban Sustainable Development in China Based on the TOPSIS-Entropy Method," Sustainability, MDPI, vol. 8(8), pages 1-23, August.
    3. Gabriele Manoli & Simone Fatichi & Markus Schläpfer & Kailiang Yu & Thomas W. Crowther & Naika Meili & Paolo Burlando & Gabriel G. Katul & Elie Bou-Zeid, 2019. "Magnitude of urban heat islands largely explained by climate and population," Nature, Nature, vol. 573(7772), pages 55-60, September.
    4. Yuan-Bin Cai & Hui-Min Li & Xin-Yue Ye & Hao Zhang, 2016. "Analyzing Three-Decadal Patterns of Land Use/Land Cover Change and Regional Ecosystem Services at the Landscape Level: Case Study of Two Coastal Metropolitan Regions, Eastern China," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    5. Yuhan Yu & Wenting Zhang & Peihong Fu & Wei Huang & Keke Li & Kai Cao, 2020. "The Spatial Optimization and Evaluation of the Economic, Ecological, and Social Value of Urban Green Space in Shenzhen," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaoyao Zhu & Gabriel Hoh Teck Ling, 2022. "A Systematic Review of Morphological Transformation of Urban Open Spaces: Drivers, Trends, and Methods," Sustainability, MDPI, vol. 14(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    2. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    3. Wan Ting Katty Huang & Pierre Masselot & Elie Bou-Zeid & Simone Fatichi & Athanasios Paschalis & Ting Sun & Antonio Gasparrini & Gabriele Manoli, 2023. "Economic valuation of temperature-related mortality attributed to urban heat islands in European cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Weiwei Li & Pingtao Yi & Danning Zhang, 2018. "Sustainability Evaluation of Cities in Northeastern China Using Dynamic TOPSIS-Entropy Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    5. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    6. Minkyung Park & Heechul Kim, 2023. "Interaction of Urban Configuration, Temperature, and De Facto Population in Seoul, Republic of Korea: Insights from Two-Stage Least-Squares Regression Using S-DoT Data," Land, MDPI, vol. 12(12), pages 1-22, November.
    7. George M. Stavrakakis & Dimitris A. Katsaprakakis & Konstantinos Braimakis, 2023. "A Computational Fluid Dynamics Modelling Approach for the Numerical Verification of the Bioclimatic Design of a Public Urban Area in Greece," Sustainability, MDPI, vol. 15(15), pages 1-27, July.
    8. Zhenshan Yang, 2019. "Sustainability of Urban Development with Population Decline in Different Policy Scenarios: A Case Study of Northeast China," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    9. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    10. Adam Pawlewicz & Katarzyna Pawlewicz, 2023. "The Risk of Agricultural Land Abandonment as a Socioeconomic Challenge for the Development of Agriculture in the European Union," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    11. Zhirong Li & Kaiheng Zheng & Qikang Zhong, 2022. "Comprehensive Evaluation and Spatial-Temporal Pattern of Green Development in Hunan Province, China," Sustainability, MDPI, vol. 14(11), pages 1-21, June.
    12. Pingtao Yi & Weiwei Li & Lingyu Li, 2018. "Evaluation and Prediction of City Sustainability Using MCDM and Stochastic Simulation Methods," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    13. Yang, Chen & Zhao, Shuqing, 2022. "Urban vertical profiles of three most urbanized Chinese cities and the spatial coupling with horizontal urban expansion," Land Use Policy, Elsevier, vol. 113(C).
    14. Huang, Xinjie & Song, Jiyun & Wang, Chenghao & Chan, Pak Wai, 2022. "Realistic representation of city street-level human thermal stress via a new urban climate-human coupling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann, 2022. "Effects of COVID-19 Restriction Policies on Urban Heat Islands in Some European Cities: Berlin, London, Paris, Madrid, and Frankfurt," IJERPH, MDPI, vol. 19(11), pages 1-25, May.
    16. Zhengsong Lin & Xinyue Ye & Qian Wei & Fan Xin & Zhang Lu & Sonali Kudva & Qiwen Dai, 2017. "Ecosystem Services Value Assessment and Uneven Development of the Qingjiang River Basin in China," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    17. Fang Shi & Mingshi Li, 2021. "Assessing Land Cover and Ecological Quality Changes under the New-Type Urbanization from Multi-Source Remote Sensing," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    18. Mingjie Shi & Hongqi Wu & Xin Fan & Hongtao Jia & Tong Dong & Panxing He & Muhammad Fahad Baqa & Pingan Jiang, 2021. "Trade-Offs and Synergies of Multiple Ecosystem Services for Different Land Use Scenarios in the Yili River Valley, China," Sustainability, MDPI, vol. 13(3), pages 1-15, February.
    19. Sumarmi Sumarmi & Purwanto Purwanto & Syamsul Bachri, 2021. "Spatial Analysis of Mangrove Forest Management to Reduce Air Temperature and CO 2 Emissions," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    20. Zakariya Kaneesamkandi & Ateekh Ur Rehman & Yusuf Siraj Usmani & Usama Umer, 2020. "Methodology for Assessment of Alternative Waste Treatment Strategies Using Entropy Weights," Sustainability, MDPI, vol. 12(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12549-:d:678451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.