IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12385-d675596.html
   My bibliography  Save this article

Applications of Models and Tools for Mesoscale and Microscale Thermal Analysis in Mid-Latitude Climate Regions—A Review

Author

Listed:
  • Gabriele Lobaccaro

    (Department of Civil and Environmental Engineering, Faculty of Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Koen De Ridder

    (Flemish Institute for Technological Research, 2400 Mol, Belgium)

  • Juan Angel Acero

    (TECNALIA, Energy and Environmental Division, Parque Tecnologico de Bizkaia, Edificio 700, 48160 Derio, Spain
    CENSAM, Singapore-MIT Aliance for Reasearch and Tecnology (SMART), 1 Create Way, Singapore #09-03, Singapore)

  • Hans Hooyberghs

    (Flemish Institute for Technological Research, 2400 Mol, Belgium)

  • Dirk Lauwaet

    (Flemish Institute for Technological Research, 2400 Mol, Belgium)

  • Bino Maiheu

    (Flanders Environment Agency (VMM), Koning Albert-II-laan 20 bus 16, 1000 Brussels, Belgium)

  • Richa Sharma

    (Centre for Environmental Health, Public Health Foundation of India (PHFI), Gurugram 500033, India)

  • Benjamin Govehovitch

    (The Centre for Thermal and Energy Science of Lyon (CETHIL), University Claude Bernard Lyon I, 69622 Villeurbanne, France
    LOCIE, Université Savoie Mont-Blanc, 73000 Chambéry, France)

Abstract

Urban analysis at different spatial scales (micro- and mesoscale) of local climate conditions is required to test typical artificial urban boundaries and related climate hazards such as high temperatures in built environments. The multitude of finishing materials and sheltering objects within built environments produce distinct patterns of different climate conditions, particularly during the daytime. The combination of high temperatures and intense solar radiation strongly perturb the environment by increasing the thermal heat stress at the pedestrian level. Therefore, it is becoming common practice to use numerical models and tools that enable multiple design and planning alternatives to be quantitatively and qualitatively tested to inform urban planners and decision-makers. These models and tools can be used to compare the relationships between the micro-climatic environment, the subjective thermal assessment, and the social behaviour, which can reveal the attractiveness and effectiveness of new urban spaces and lead to more sustainable and liveable public spaces. This review article presents the applications of selected environmental numerical models and tools to predict human thermal stress at the mesoscale (e.g., satellite thermal images and UrbClim) and the microscale (e.g., mobile measurements, ENVI-met, and UrbClim HR) focusing on case study cities in mid-latitude climate regions framed in two European research projects.

Suggested Citation

  • Gabriele Lobaccaro & Koen De Ridder & Juan Angel Acero & Hans Hooyberghs & Dirk Lauwaet & Bino Maiheu & Richa Sharma & Benjamin Govehovitch, 2021. "Applications of Models and Tools for Mesoscale and Microscale Thermal Analysis in Mid-Latitude Climate Regions—A Review," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12385-:d:675596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
    2. Yezioro, A. & Capeluto, Isaac G. & Shaviv, E., 2006. "Design guidelines for appropriate insolation of urban squares," Renewable Energy, Elsevier, vol. 31(7), pages 1011-1023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    2. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    3. Juan Rojas-Fernández & Carmen Galán-Marín & Jorge Roa-Fernández & Carlos Rivera-Gómez, 2017. "Correlations between GIS-Based Urban Building Densification Analysis and Climate Guidelines for Mediterranean Courtyards," Sustainability, MDPI, vol. 9(12), pages 1-26, December.
    4. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    5. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    6. Miguel Amado & Francesca Poggi & António Ribeiro Amado & Sílvia Breu, 2018. "E-City Web Platform: A Tool for Energy Efficiency at Urban Level," Energies, MDPI, vol. 11(7), pages 1-14, July.
    7. Matteo Formolli & Gabriele Lobaccaro & Jouri Kanters, 2021. "Solar Energy in the Nordic Built Environment: Challenges, Opportunities and Barriers," Energies, MDPI, vol. 14(24), pages 1-18, December.
    8. Tian, B. & Loonen, R.C.G.M. & Bognár, Á. & Hensen, J.L.M., 2022. "Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas," Renewable Energy, Elsevier, vol. 198(C), pages 804-824.
    9. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Igor Gallay & Branislav Olah & Veronika Murtinová & Zuzana Gallayová, 2023. "Quantification of the Cooling Effect and Cooling Distance of Urban Green Spaces Based on Their Vegetation Structure and Size as a Basis for Management Tools for Mitigating Urban Climate," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    11. Azraff Bin Rozmi, Mohd Daniel & Thirunavukkarasu, Gokul Sidarth & Jamei, Elmira & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Stojcevski, Alex & Horan, Ben, 2019. "Role of immersive visualization tools in renewable energy system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Sarmiento, Nilsa & Belmonte, Silvina & Dellicompagni, Pablo & Franco, Judith & Escalante, Karina & Sarmiento, Joaquín, 2019. "A solar irradiation GIS as decision support tool for the Province of Salta, Argentina," Renewable Energy, Elsevier, vol. 132(C), pages 68-80.
    13. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    14. Han, Jen-Yu & Li, Sin-Yi & Chen, Yi-Chien, 2025. "Estimation of solar photovoltaic efficiency under the urban heat island effect," Renewable Energy, Elsevier, vol. 242(C).
    15. Agnieszka Bieda & Agnieszka Cienciała, 2021. "Towards a Renewable Energy Source Cadastre—A Review of Examples from around the World," Energies, MDPI, vol. 14(23), pages 1-34, December.
    16. Ali, Ihsan & Shafiullah, GM & Urmee, Tania, 2018. "A preliminary feasibility of roof-mounted solar PV systems in the Maldives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 18-32.
    17. Arias-Rosales, Andrés & LeDuc, Philip R., 2022. "Shadow modeling in urban environments for solar harvesting devices with freely defined positions and orientations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Jiayu Li & Bohong Zheng & Xiao Chen & Yihua Zhou & Jifa Rao & Komi Bernard Bedra, 2020. "Research on Annual Thermal Environment of Non-Hvac Building Regulated by Window-to-Wall Ratio in a Chinese City (Chenzhou)," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    19. Huang, Zhaojian & Mendis, Thushini & Xu, Shen, 2019. "Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 250(C), pages 283-291.
    20. Lee, Kyung Sun & Lee, Jae Wook & Lee, Jae Seung, 2016. "Feasibility study on the relation between housing density and solar accessibility and potential uses," Renewable Energy, Elsevier, vol. 85(C), pages 749-758.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12385-:d:675596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.