IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10143-d632829.html
   My bibliography  Save this article

Average Luminance Calculation in Street Lighting Design, Comparison between BS-EN 13201 and RP-08 Standards

Author

Listed:
  • Alexandru Viorel Rusu

    (Faculty of Electrical Engineering, Technical University Gheorghe Asachi, 700050 Iasi, Romania)

  • Catalin Daniel Galatanu

    (Faculty of Civil Engineering and Building Services, Technical University Gheorghe Asachi, 700050 Iasi, Romania)

  • Gheorghe Livint

    (Faculty of Electrical Engineering, Technical University Gheorghe Asachi, 700050 Iasi, Romania)

  • Dorin Dumitru Lucache

    (Faculty of Electrical Engineering, Technical University Gheorghe Asachi, 700050 Iasi, Romania)

Abstract

This paper presents a study on the influence of the observer’s position in relation to the calculation surface. This is the initial observation of the research, respectively that the two standards consider the position of the observer differently. For these situations, two types of calculations were performed. For the first set of calculations, the software used was DIALux 4.13 as this software can perform calculations in line with the RP-08 standard. The second set of calculations was performed with a script that offers the possibility to change the observer’s position. The conclusion was that EN-13201 has a better approach, but both standards could be improved. The second case study refers to the influence of the longitudinal observer position in an average luminance calculation. If one considers RP-08 as a guideline for performing the calculations, the conclusions are that changing the distance from the observer to the calculation surface has absolutely no effect on the average luminance value. On the other hand, if European standards are used as a guideline, changing the distance (from the standardized 60 m, either closer to the calculation surface or further away) can influence the overall results in average luminance and uniformity. Taking into account the results of these two case studies, the conclusion is that both RP-08 and BS-EN 13201 should be updated so that the observer’s distance in relation to the calculation surface would be a variable dependent on the stopping distance calculated based on the speed limit of the road.

Suggested Citation

  • Alexandru Viorel Rusu & Catalin Daniel Galatanu & Gheorghe Livint & Dorin Dumitru Lucache, 2021. "Average Luminance Calculation in Street Lighting Design, Comparison between BS-EN 13201 and RP-08 Standards," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10143-:d:632829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Igor Wojnicki & Konrad Komnata & Leszek Kotulski, 2019. "Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control," Energies, MDPI, vol. 12(8), pages 1-14, April.
    2. Djuretic, Andrej & Kostic, Miomir, 2018. "Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting," Energy, Elsevier, vol. 157(C), pages 367-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Greffier & Valérie Muzet & Vincent Boucher & Fabrice Fournela & Laure Lebouc & Sébastien Liandrat, 2021. "Influence of Pavement Heterogeneity and Observation Angle on Lighting Design: Study with New Metrics," Sustainability, MDPI, vol. 13(21), pages 1-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lambros T. Doulos & Ioannis Sioutis & Aris Tsangrassoulis & Laurent Canale & Kostantinos Faidas, 2020. "Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies," Energies, MDPI, vol. 13(7), pages 1-23, April.
    2. Beccali, M. & Bonomolo, M. & Leccese, F. & Lista, D. & Salvadori, G., 2018. "On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design," Energy, Elsevier, vol. 165(PB), pages 739-759.
    3. Sebastian Ernst & Leszek Kotulski & Adam Sędziwy & Igor Wojnicki, 2023. "Graph-Based Computational Methods for Efficient Management and Energy Conservation in Smart Cities," Energies, MDPI, vol. 16(7), pages 1-21, April.
    4. Dusan Gordic & Vladimir Vukasinovic & Zoran Kovacevic & Mladen Josijevic & Dubravka Zivkovic, 2021. "Assessing the Techno-Economic Effects of Replacing Energy-Inefficient Street Lighting with LED Corn Bulbs," Energies, MDPI, vol. 14(13), pages 1-16, June.
    5. Chiatti, Chiara & Fabiani, Claudia & Bondi, Roberto & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2023. "Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment," Energy, Elsevier, vol. 275(C).
    6. Horaţiu Albu & Dorin Beu & Calin Ciugudeanu, 2022. "Study on the Power Quality of LED Street Luminaires," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    7. Laura Moretti & Giuseppe Cantisani & Luigi Carrarini & Francesco Bezzi & Valentina Cherubini & Sebastiano Nicotra, 2019. "Italian Road Tunnels: Economic and Environmental Effects of an On-Going Project to Reduce Lighting Consumption," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    8. José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & Paulo Brito, 2019. "LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    9. Przemyslaw Tabaka, 2021. "Influence of Replacement of Sodium Lamps in Park Luminaires with LED Sources of Different Closest Color Temperature on the Effect of Light Pollution and Energy Efficiency," Energies, MDPI, vol. 14(19), pages 1-30, October.
    10. Przemyslaw Tabaka & Pawel Rozga, 2020. "Influence of a Light Source Installed in a Luminaire of Opal Sphere Type on the Effect of Light Pollution," Energies, MDPI, vol. 13(2), pages 1-19, January.
    11. Gaffuri, Pierre & Stolyarova, Elena & Llerena, Daniel & Appert, Estelle & Consonni, Marianne & Robin, Stéphane & Consonni, Vincent, 2021. "Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Chiatti, Chiara & Fabiani, Claudia & Pisello, Anna Laura, 2023. "Toward the energy optimization of smart lighting systems through the luminous potential of photoluminescence," Energy, Elsevier, vol. 266(C).
    13. Enrique Navarrete-de Galvez & Alfonso Gago-Calderon & Luz Garcia-Ceballos & Miguel Angel Contreras-Lopez & Jose Ramon Andres-Diaz, 2021. "Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    14. Munjed A. Maraqa & Francisco D. B. Albuquerque & Mohammed H. Alzard & Rezaul Chowdhury & Lina A. Kamareddine & Jamal El Zarif, 2021. "GHG Emission Reduction Opportunities for Road Projects in the Emirate of Abu Dhabi: A Scenario Approach," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    15. Annika K. Jägerbrand, 2020. "Synergies and Trade-Offs Between Sustainable Development and Energy Performance of Exterior Lighting," Energies, MDPI, vol. 13(9), pages 1-27, May.
    16. Theodor Terrich & Marek Balsky, 2022. "The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution," Sustainability, MDPI, vol. 14(9), pages 1-10, April.
    17. Roman Sikora & Przemysław Markiewicz, 2020. "Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast," Energies, MDPI, vol. 13(11), pages 1-21, June.
    18. Davidovic, M. & Kostic, M., 2022. "Comparison of energy efficiency and costs related to conventional and LED road lighting installations," Energy, Elsevier, vol. 254(PB).
    19. Tallal Ahmed & Waqas Khalid & Adeela Aslam, 2022. "Energy conservation potential in highway illumination system: A Techno-Enviro-Economic study on retrofitting HPS with LED luminaires," Energy & Environment, , vol. 33(3), pages 599-613, May.
    20. Salvia, Amanda Lange & Brandli, Luciana Londero & Leal Filho, Walter & Locatelli Kalil, Rosa Maria, 2019. "An analysis of the applications of Analytic Hierarchy Process (AHP) for selection of energy efficiency practices in public lighting in a sample of Brazilian cities," Energy Policy, Elsevier, vol. 132(C), pages 854-864.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10143-:d:632829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.