IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9262-d616674.html
   My bibliography  Save this article

Development of Leakage Detection Model and Its Application for Water Distribution Networks Using RNN-LSTM

Author

Listed:
  • Chan-Wook Lee

    (Department of Civil Engineering, The University of Suwon, Hwaseong-si 445-743, Korea)

  • Do-Guen Yoo

    (Department of Civil Engineering, The University of Suwon, Hwaseong-si 445-743, Korea)

Abstract

With the advent of the 4th Industrial Revolution, advanced measurement infrastructure and utilization technologies are being noticeably introduced into the water supply system to store and utilize measurement data. From this perspective, the leak detection technology in water supply networks is becoming increasingly vital to sustainable water resource management and the clean water supply worldwide. In particular, leakage detection of buried pipelines is rated as a very challenging research topic given the current level of technology. However, leakage in buried underground pipelines is rated as a very challenging research topic given the current level of technology. Therefore, a data-driven leak detection model was developed through this study using deep learning technology based on inflow meter data. Multiple threshold-based models were applied to reduce the RNN-LSTM (Recurrent Neural Networks–Long Short-Term Memory models) deep learning and false prediction range, which is programmed in conjunction with the Python language and Google Colaboratory (a big data analysis tool). The developed model consists of flow pattern shape extraction, RNN-LSTM-based flow prediction, and threshold setting modules. The developed model was applied to the actual leakage accident data, followed by the performance evaluation. As a result, the leak was recognized at most points immediately after the accident. The performance of leak detection was evaluated by a Confusion matrix and showed more than 90% accuracy at all points except singularities. Therefore, the developed model can be used as a critical software technology to proactively identify various at present with smart water infrastructure being introduced. In addition, this model is highly scalable as it can consider various operational situations based on the expert system, and it can also efficiently reflect the results of pipe network analysis across different scenarios.

Suggested Citation

  • Chan-Wook Lee & Do-Guen Yoo, 2021. "Development of Leakage Detection Model and Its Application for Water Distribution Networks Using RNN-LSTM," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9262-:d:616674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    2. Erfan Hajibandeh & Sara Nazif, 2018. "Pressure Zoning Approach for Leak Detection in Water Distribution Systems Based on a Multi Objective Ant Colony Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2287-2300, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Glynis & Zoran Kapelan & Martijn Bakker & Riccardo Taormina, 2023. "Leveraging Transfer Learning in LSTM Neural Networks for Data-Efficient Burst Detection in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 5953-5972, December.
    2. Hyeong-Suk Kim & Dooyong Choi & Do-Guen Yoo & Kyoung-Pil Kim, 2022. "Hyperparameter Sensitivity Analysis of Deep Learning-Based Pipe Burst Detection Model for Multiregional Water Supply Networks," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    3. Hyeong-Suk Kim & Dooyong Choi & Do-Guen Yoo & Kyoung-Pil Kim, 2022. "Development of the Methodology for Pipe Burst Detection in Multi-Regional Water Supply Networks Using Sensor Network Maps and Deep Neural Networks," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    4. Sanghoon Jun & Kevin E. Lansey, 2023. "Convolutional Neural Network for Burst Detection in Smart Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3729-3743, July.
    5. Chia-Cheng Shiu & Chih-Chung Chung & Tzuping Chiang, 2024. "Enhancing the EPANET Hydraulic Model through Genetic Algorithm Optimization of Pipe Roughness Coefficients," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 323-341, January.
    6. Ryul Kim & Young Hwan Choi, 2023. "The Development of a Data-Based Leakage Pinpoint Detection Technique for Water Distribution Systems," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
    7. Joohee Park & Seulgi Kang & Seongjoon Byeon, 2025. "Analysis of Regional Characteristics of Climate Change Factors Affecting Water Distribution Pipe Leakage," Sustainability, MDPI, vol. 17(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    2. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
    4. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    5. Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
    6. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    7. Lee, Zachary E. & Zhang, K. Max, 2021. "Scalable identification and control of residential heat pumps: A minimal hardware approach," Applied Energy, Elsevier, vol. 286(C).
    8. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    9. Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
    10. Zou, Rongwei & Yang, Qiliang & Xing, Jianchun & Zhou, Qizhen & Xie, Liqiang & Chen, Wenjie, 2024. "Predicting the electric power consumption of office buildings based on dynamic and static hybrid data analysis," Energy, Elsevier, vol. 290(C).
    11. Meihang Zhang & Hua Zhang & Wei Yan & Zhigang Jiang & Shuo Zhu, 2023. "An Integrated Deep-Learning-Based Approach for Energy Consumption Prediction of Machining Systems," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    12. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    13. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
    14. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    15. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    16. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    17. Ma, Yichuan X. & Yeung, Lawrence K., 2024. "BEForeGAN: An image-based deep generative approach for day-ahead forecasting of building HVAC energy consumption," Applied Energy, Elsevier, vol. 376(PA).
    18. Wang, Yongjie & Zhan, Changhong & Li, Guanghao & Ren, Shaochen, 2024. "Comparison of algorithms for heat load prediction of buildings," Energy, Elsevier, vol. 297(C).
    19. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
    20. Bruno Ferreira & Nelson Carriço & Dídia Covas, 2025. "Near Real-time Leak Location by Inverse Analysis Integrating Measurement Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 503-521, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9262-:d:616674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.