IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8694-d608054.html
   My bibliography  Save this article

Design and Development of a Variable Rate Applicator for Real-Time Application of Fertilizer

Author

Listed:
  • Hasan Mirzakhaninafchi

    (Department of Farm Machinery and Power Engineering, College of Agricultural Engineering and Technology (COAET), Punjab Agricultural University (PAU), Ludhiana 141004, India)

  • Manjeet Singh

    (Department of Farm Machinery and Power Engineering, College of Agricultural Engineering and Technology (COAET), Punjab Agricultural University (PAU), Ludhiana 141004, India)

  • Vishal Bector

    (Department of Farm Machinery and Power Engineering, College of Agricultural Engineering and Technology (COAET), Punjab Agricultural University (PAU), Ludhiana 141004, India)

  • O. P. Gupta

    (Department of Electrical Engineering and Information Technology, College of Agricultural Engineering and Technology, Punjab Agricultural University, Ludhiana 141004, India)

  • Rajvir Singh

    (Department of Electronic and Communication Engineering, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India)

Abstract

Variable rate technology offers a sustainable, efficient, and cost-effective solution for fertilizer application. A study was conducted to design and develop a variable rate fertilizer applicator to detect real-time deficiency of N within the field and apply it per requirement of the crop. The microcontroller system was designed to receive a signal from the N sensor and send a signal to the pulse-width-modulation valve to vary the rotational speed of the hydraulic motor resulting in variation in the rotation of the metering mechanism drive shaft based on the recommended amount of fertilizer. During the field study, three replications were conducted, each of which was divided into four plots. The response time between the N sensing and fertilizer discharging fell within the range of 3.49 to 4.90 s. Fertilizer applied using the developed variable rate applicator indicated that when the fertilizer rate is increased from N1 to N4 (kg ha −1 ), NDVI increased from 0.56 to 0.78 and drive shaft rotational speed decreased from 20 to 0 rpm in order to apply the fertilizer at a rate of 0.00 instead of 78.36 kg ha −1 . Using the developed applicator demonstrates that this technology could reduce environmental impact, making farming more sustainable.

Suggested Citation

  • Hasan Mirzakhaninafchi & Manjeet Singh & Vishal Bector & O. P. Gupta & Rajvir Singh, 2021. "Design and Development of a Variable Rate Applicator for Real-Time Application of Fertilizer," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8694-:d:608054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jelle Van Loon & Alicia B. Speratti & Louis Gabarra & Bram Govaerts, 2018. "Precision for Smallholder Farmers: A Small-Scale-Tailored Variable Rate Fertilizer Application Kit," Agriculture, MDPI, vol. 8(4), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Mirzakhaninafchi & Manjeet Singh & Anoop Kumar Dixit & Apoorv Prakash & Shikha Sharda & Jugminder Kaur & Ali Mirzakhani Nafchi, 2022. "Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    2. Xiuhua Song & Hong Li & Chao Chen & Huameng Xia & Zhiyang Zhang & Pan Tang, 2022. "Design and Experimental Testing of a Control System for a Solid-Fertilizer-Dissolving Device Based on Fuzzy PID," Agriculture, MDPI, vol. 12(9), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan Mirzakhaninafchi & Manjeet Singh & Anoop Kumar Dixit & Apoorv Prakash & Shikha Sharda & Jugminder Kaur & Ali Mirzakhani Nafchi, 2022. "Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    2. Mohammad Nishat Akhtar & Emaad Ansari & Syed Sahal Nazli Alhady & Elmi Abu Bakar, 2023. "Leveraging on Advanced Remote Sensing- and Artificial Intelligence-Based Technologies to Manage Palm Oil Plantation for Current Global Scenario: A Review," Agriculture, MDPI, vol. 13(2), pages 1-26, February.
    3. Veronica Sanda Chedea & Ana-Maria Drăgulinescu & Liliana Lucia Tomoiagă & Cristina Bălăceanu & Maria Lucia Iliescu, 2021. "Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard," Sustainability, MDPI, vol. 13(15), pages 1-28, July.
    4. Egidijus Šarauskis & Vilma Naujokienė & Kristina Lekavičienė & Zita Kriaučiūnienė & Eglė Jotautienė & Algirdas Jasinskas & Raimonda Zinkevičienė, 2021. "Application of Granular and Non-Granular Organic Fertilizers in Terms of Energy, Environmental and Economic Efficiency," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    5. Van Loon, Jelle & Woltering, Lennart & Krupnik, Timothy J. & Baudron, Frédéric & Boa, Maria & Govaerts, Bram, 2020. "Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America," Agricultural Systems, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8694-:d:608054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.