IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2258-d332314.html
   My bibliography  Save this article

Evaluation Model of Environmental Impacts of Insulation Building Envelopes

Author

Listed:
  • Qianmiao Yang

    (School Architectural and Planning, Shandong Jianzhu University, Jinan 250101, China
    Shandong Co-Innovation Center of Green Building, Shandong Jianzhu University, Jinan 250101, China)

  • Liyao Kong

    (School Architectural and Planning, Shandong Jianzhu University, Jinan 250101, China)

  • Hui Tong

    (School Architectural and Planning, Shandong Jianzhu University, Jinan 250101, China)

  • Xiaolin Wang

    (School Architectural and Planning, Shandong Jianzhu University, Jinan 250101, China)

Abstract

Energy consumption during use is the focus of insulation envelope design, but the environmental impact of other stages in the entire life cycle of building envelopes should be of equal concern. In this paper, a model has been developed based on the life-cycle environmental assessment for calculating the environmental impacts of building envelopes. The model proposed will be useful to evaluate the environmental performance of various envelopes to optimize the design of energy-saving envelopes. Consequently, lots of experiments are conducted for environmental impact assessment and analysis for external windows and filler walls with energy-savings in heating areas of China. Four conclusions can be drawn from the analysis. (1) K of building envelope is the design parameter of the greatest impact on environmental performance and has a critical value, which is the value that has the smallest environmental impact over the entire life cycle. (2) The importance of the environmental impact of the building envelope during the life cycle stages is as follows: usage > production > transportation > disposal > construction. The construction process of the thermal insulation wall could be negligible. (3) The choice of regional building materials should consider the distance of transportation, which may be the key factor determining its life cycle environmental performance. (4) Aerated concrete EPS walls and wooden windows are the first choices for envelope construction from the environmental impact throughout the life cycle.

Suggested Citation

  • Qianmiao Yang & Liyao Kong & Hui Tong & Xiaolin Wang, 2020. "Evaluation Model of Environmental Impacts of Insulation Building Envelopes," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2258-:d:332314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José D. Silvestre & André M. P. Castelo & José J. B. C. Silva & Jorge M. C. L. de Brito & Manuel D. Pinheiro, 2019. "Energy Retrofitting of a Buildings’ Envelope: Assessment of the Environmental, Economic and Energy (3E) Performance of a Cork-Based Thermal Insulating Rendering Mortar," Energies, MDPI, vol. 13(1), pages 1-13, December.
    2. Adamczyk, Janusz & Dylewski, Robert, 2017. "Changes in heat transfer coefficients in Poland and their impact on energy demand - an environmental and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 530-538.
    3. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    3. Pau Fonseca i Casas & Antoni Fonseca i Casas, 2017. "Using Specification and Description Language for Life Cycle Assesment in Buildings," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    4. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    5. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    6. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    7. Ashok Kumar & Pardeep Singh & Nishant Raj Kapoor & Chandan Swaroop Meena & Kshitij Jain & Kishor S. Kulkarni & Raffaello Cozzolino, 2021. "Ecological Footprint of Residential Buildings in Composite Climate of India—A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-25, October.
    8. Elena Fregonara & Diego Giuseppe Ferrando & Jean-Marc Tulliani, 2022. "Sustainable Public Procurement in the Building Construction Sector," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    9. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2017. "Modeling the energy and environmental life cycle of buildings: A co-simulation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 733-742.
    10. Henrik Engelbrecht Foldager & Rasmus Camillus Jeppesen & Muhyiddine Jradi, 2019. "DanRETRO: A Decision-Making Tool for Energy Retrofit Design and Assessment of Danish Buildings," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    11. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Serik Tokbolat & Farnush Nazipov & Jong R. Kim & Ferhat Karaca, 2019. "Evaluation of the Environmental Performance of Residential Building Envelope Components," Energies, MDPI, vol. 13(1), pages 1-10, December.
    13. Pollyanna Fernandes Bianchi & Víctor Yepes & Paulo Cezar Vitorio & Moacir Kripka, 2021. "Study of Alternatives for the Design of Sustainable Low-Income Housing in Brazil," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    14. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    15. Goune Kang & Hunhee Cho & Dongyoun Lee, 2019. "Dynamic Lifecycle Assessment in Building Construction Projects: Focusing on Embodied Emissions," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
    16. Xabat Oregi & Rufino Javier Hernández & Patxi Hernandez, 2020. "Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    17. Jana Gerta Backes & Marzia Traverso, 2021. "Life Cycle Sustainability Assessment—A Survey Based Potential Future Development for Implementation and Interpretation," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    18. Xingqiang Song & Christel Carlsson & Ramona Kiilsgaard & David Bendz & Helene Kennedy, 2020. "Life Cycle Assessment of Geotechnical Works in Building Construction: A Review and Recommendations," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    19. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Karel Struhala & Milan Ostrý, 2021. "Life-Cycle Assessment of a Rural Terraced House: A Struggle with Sustainability of Building Renovations," Energies, MDPI, vol. 14(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2258-:d:332314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.