IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p2071-d329884.html
   My bibliography  Save this article

Tillage Intensity Effects on Soil Structure Indicators—A US Meta-Analysis

Author

Listed:
  • Márcio R. Nunes

    (USDA-Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard., Ames, IA 50011-3611, USA)

  • Douglas L. Karlen

    (USDA-Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard., Ames, IA 50011-3611, USA)

  • Thomas B. Moorman

    (USDA-Agricultural Research Service, National Laboratory for Agriculture and the Environment, 1015 N. University Boulevard., Ames, IA 50011-3611, USA)

Abstract

Tillage intensity affects soil structure in many ways but the magnitude and type (+/−) of change depends on site-specific (e.g., soil type) and experimental details (crop rotation, study length, sampling depth, etc.). This meta-analysis examines published effects of chisel plowing (CP), no-tillage (NT) and perennial cropping systems (PER) relative to moldboard plowing (MP) on three soil structure indicators: wet aggregate stability (AS), bulk density (BD) and soil penetration resistance (PR). The data represents four depth increments (from 0 to >40-cm) in 295 studies from throughout the continental U.S. Overall, converting from MP to CP did not affect those soil structure indicators but reducing tillage intensity from MP to NT increased AS in the surface (<15-cm) and slightly decreased BD and PR below 25-cm. The largest positive effect of NT on AS was observed within Inceptisols and Entisols after a minimum of three years. Compared to MP, NT had a minimal effect on soil compaction indicators (BD and PR) but as expected, converting from MP to PER systems improved soil structure at all soil depths (0 to >40-cm). Among those three soil structure indicators, AS was the most sensitive to management practices; thus, it should be used as a physical indicator for overall soil health assessment. In addition, based on this national meta-analysis, we conclude that reducing tillage intensity improves soil structure, thus offering producers assurance those practices are feasible for crop production and that they will also help sustain soil resources.

Suggested Citation

  • Márcio R. Nunes & Douglas L. Karlen & Thomas B. Moorman, 2020. "Tillage Intensity Effects on Soil Structure Indicators—A US Meta-Analysis," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2071-:d:329884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/2071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/2071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    2. Douglas L. Karlen & Charles W. Rice, 2015. "Soil Degradation: Will Humankind Ever Learn?," Sustainability, MDPI, vol. 7(9), pages 1-12, September.
    3. Jessica Gurevitch & Julia Koricheva & Shinichi Nakagawa & Gavin Stewart, 2018. "Meta-analysis and the science of research synthesis," Nature, Nature, vol. 555(7695), pages 175-182, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadia Vignozzi & Maria Costanza Andrenelli & Alessandro Elio Agnelli & Angelo Fiore & Sergio Pellegrini, 2023. "Short-Term Effect of Different Inputs of Organic Amendments from Olive Oil Industry By-Products on Soil Organic Carbon and Physical Properties," Land, MDPI, vol. 12(8), pages 1-13, August.
    2. Rui Zhao & Kening Wu & Xiaoliang Li & Nan Gao & Mingming Yu, 2021. "Discussion on the Unified Survey and Evaluation of Cultivated Land Quality at County Scale for China’s 3rd National Land Survey: A Case Study of Wen County, Henan Province," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    3. Muhammad Shaukat & Ashfaq Ahmad & Tasneem Khaliq & Aaron Kinyu Hoshide & Daniel C. de Abreu, 2023. "Organic Amendments and Reduced Tillage Accelerate Harvestable C Biomass and Soil C Sequestration in Rice–Wheat Rotation in a Semi-Arid Environment," Sustainability, MDPI, vol. 15(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Hansen & Holger Steinmetz & Jörn Block, 2022. "How to conduct a meta-analysis in eight steps: a practical guide," Management Review Quarterly, Springer, vol. 72(1), pages 1-19, February.
    2. Cinar, Ozan & Nakagawa, Shinichi & Viechtbauer, Wolfgang, 2020. "Phylogenetic multilevel meta-analysis: A simulation study on the importance of modeling the phylogeny," EcoEvoRxiv su4zv, Center for Open Science.
    3. David Weisberger & Virginia Nichols & Matt Liebman, 2019. "Does diversifying crop rotations suppress weeds? A meta-analysis," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-12, July.
    4. Jing Gao & Wei Hu & Jiawei Wang & Yichong Cui & Liuxin Li, 2023. "Response of Growth-Related Traits of Submerged Macrophytes to Light Reduction: A Meta-Analysis," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    5. Laura A. B. Wilson & Susanne R. K. Zajitschek & Malgorzata Lagisz & Jeremy Mason & Hamed Haselimashhadi & Shinichi Nakagawa, 2022. "Sex differences in allometry for phenotypic traits in mice indicate that females are not scaled males," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Whitney S Beck & Ed K Hall, 2018. "Confounding factors in algal phosphorus limitation experiments," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    7. Oded Berger-Tal & Alison L Greggor & Biljana Macura & Carrie Ann Adams & Arden Blumenthal & Amos Bouskila & Ulrika Candolin & Carolina Doran & Esteban Fernández-Juricic & Kiyoko M Gotanda & Catherine , 2019. "Systematic reviews and maps as tools for applying behavioral ecology to management and policy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(1), pages 1-8.
    8. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    9. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    10. repec:cup:judgdm:v:15:y:2020:i:6:p:972-988 is not listed on IDEAS
    11. Jonas Schmidt & Tammo H. A. Bijmolt, 2020. "Accurately measuring willingness to pay for consumer goods: a meta-analysis of the hypothetical bias," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 499-518, May.
    12. Mario Herberz & Tobias Brosch & Ulf J. J. Hahnel, 2020. "Kilo what? Default units increase value sensitivity in joint evaluations of energy efficiency," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(6), pages 972-988, November.
    13. Piers Steel & Sjoerd Beugelsdijk & Herman Aguinis, 2021. "The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(1), pages 23-44, February.
    14. Phu Nguyen-Van & Anne Stenger & Tuyen Tiet, 2021. "Social incentive factors in interventions promoting sustainable behaviors: A meta-analysis," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-27, December.
    15. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    16. Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj, Center for Open Science.
    17. Georgiou, George K. & Guo, Kan & Naveenkumar, Nithya & Vieira, Ana Paula Alves & Das, J.P., 2020. "PASS theory of intelligence and academic achievement: A meta-analytic review," Intelligence, Elsevier, vol. 79(C).
    18. Geller, Susann & Wilhelm, Oliver & Wacker, Jan & Hamm, Alfons & Hildebrandt, Andrea, 2017. "Associations of the COMT Val158Met polymorphism with working memory and intelligence – A review and meta-analysis," Intelligence, Elsevier, vol. 65(C), pages 75-92.
    19. Gignac, Gilles E. & Bates, Timothy C., 2017. "Brain volume and intelligence: The moderating role of intelligence measurement quality," Intelligence, Elsevier, vol. 64(C), pages 18-29.
    20. Stephan Kambach & Ingolf Kühn & Bastien Castagneyrol & Helge Bruelheide, 2016. "The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    21. repec:cup:judgdm:v:14:y:2019:i:3:p:234-279 is not listed on IDEAS
    22. Senlin Zhou & Yunpeng Wu & Xizheng Xu, 2023. "Linking Cognitive Reappraisal and Expressive Suppression to Mindfulness: A Three-Level Meta-Analysis," IJERPH, MDPI, vol. 20(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2071-:d:329884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.