IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7253-d408912.html
   My bibliography  Save this article

An Elitist Multi-Objective Particle Swarm Optimization Algorithm for Sustainable Dynamic Economic Emission Dispatch Integrating Wind Farms

Author

Listed:
  • Motaeb Eid Alshammari

    (Department of Electrical and Computer Engineering (ECE), King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Makbul A. M. Ramli

    (Department of Electrical and Computer Engineering (ECE), King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ibrahim M. Mehedi

    (Department of Electrical and Computer Engineering (ECE), King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

In recent years, wind energy has been widely used as an alternative energy source as it is a clean energy with a low running cost. However, the high penetration of wind power (WP) in power networks has created major challenges due to their intermittency. In this study, an elitist multi-objective evolutionary algorithm called non-dominated sorting particle swarm optimization (NSPSO) is proposed to solve the dynamic economic emission dispatch (DEED) problem with WP. The proposed optimization technique referred to as NSPSO uses the non-dominated sorting principle to rank the non-dominated solutions. A crowding distance calculation is added at the end of all iterations of the algorithm. In this study, WP is represented by a chance-constraint which describes the probability that the power balance cannot be met. The uncertainty of WP is described by the Weibull distribution function. In this study, the chance constraint DEED problem is converted into a deterministic problem. Then, the NSPSO is applied to simultaneously minimize the total generation cost and emission of harmful gases. To proof the performance of the proposed method, the ten-unit and forty-unit systems—including wind farms—are used. Simulation results obtained by the NSPSO method are compared with other optimization techniques that were presented recently in the literature. Moreover, the impact of the penetration ratio of WP is investigated.

Suggested Citation

  • Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2020. "An Elitist Multi-Objective Particle Swarm Optimization Algorithm for Sustainable Dynamic Economic Emission Dispatch Integrating Wind Farms," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7253-:d:408912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karar Mahmoud & Mohamed Abdel-Nasser & Eman Mustafa & Ziad M. Ali, 2020. "Improved Salp–Swarm Optimizer and Accurate Forecasting Model for Dynamic Economic Dispatch in Sustainable Power Systems," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
    2. Yanzhe Hu & Yang Li & Mengjie Xu & Li Zhou & Mingjian Cui, 2017. "A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System," Energies, MDPI, vol. 10(3), pages 1-21, March.
    3. Wei-Tzer Huang & Kai-Chao Yao & Ming-Ku Chen & Feng-Ying Wang & Cang-Hui Zhu & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2018. "Derivation and Application of a New Transmission Loss Formula for Power System Economic Dispatch," Energies, MDPI, vol. 11(2), pages 1-19, February.
    4. Alham, M.H. & Elshahed, M. & Ibrahim, Doaa Khalil & Abo El Zahab, Essam El Din, 2016. "A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management," Renewable Energy, Elsevier, vol. 96(PA), pages 800-811.
    5. Le Chi Kien & Thanh Long Duong & Van-Duc Phan & Thang Trung Nguyen, 2020. "Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization," Sustainability, MDPI, vol. 12(3), pages 1-35, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Jalili, Mahdi, 2023. "Optimization of integrated load dispatch in multi-fueled renewable rich power systems using fractal firefly algorithm," Energy, Elsevier, vol. 278(PA).
    2. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2021. "A New Chaotic Artificial Bee Colony for the Risk-Constrained Economic Emission Dispatch Problem Incorporating Wind Power," Energies, MDPI, vol. 14(13), pages 1-24, July.
    3. Saqib Akram & Muhammad Salman Fakhar & Syed Abdul Rahman Kashif & Ghulam Abbas & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "Introducing Adaptive Machine Learning Technique for Solving Short-Term Hydrothermal Scheduling with Prohibited Discharge Zones," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    4. Hossein Nourianfar & Hamdi Abdi, 2022. "Environmental/Economic Dispatch Using a New Hybridizing Algorithm Integrated with an Effective Constraint Handling Technique," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    5. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    6. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    7. Benyekhlef Larouci & Ahmed Nour El Islam Ayad & Hisham Alharbi & Turki E. A. Alharbi & Houari Boudjella & Abdelkader Si Tayeb & Sherif S. M. Ghoneim & Saad A. Mohamed Abdelwahab, 2022. "Investigation on New Metaheuristic Algorithms for Solving Dynamic Combined Economic Environmental Dispatch Problems," Sustainability, MDPI, vol. 14(9), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulrashid Muhammad Kabir & Mohsin Kamal & Fiaz Ahmad & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez & Faizan Mehmood, 2021. "Optimized Economic Load Dispatch with Multiple Fuels and Valve-Point Effects Using Hybrid Genetic–Artificial Fish Swarm Algorithm," Sustainability, MDPI, vol. 13(19), pages 1-27, September.
    2. Diaa Salman & Mehmet Kusaf, 2021. "Short-Term Unit Commitment by Using Machine Learning to Cover the Uncertainty of Wind Power Forecasting," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    3. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    4. Tingli Cheng & Minyou Chen & Yingxiang Wang & Bo Li & Muhammad Arshad Shehzad Hassan & Tao Chen & Ruilin Xu, 2018. "Adaptive Robust Method for Dynamic Economic Emission Dispatch Incorporating Renewable Energy and Energy Storage," Complexity, Hindawi, vol. 2018, pages 1-13, June.
    5. Long Cai & Jie Gu & Jinghuan Ma & Zhijian Jin, 2019. "Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees," Energies, MDPI, vol. 12(1), pages 1-19, January.
    6. Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
    7. Panpan Mei & Lianghong Wu & Hongqiang Zhang & Zhenzu Liu, 2019. "A Hybrid Multi-Objective Crisscross Optimization for Dynamic Economic/Emission Dispatch Considering Plug-In Electric Vehicles Penetration," Energies, MDPI, vol. 12(20), pages 1-21, October.
    8. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Overcapacity in European power systems: Analysis and robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    9. Basu, M., 2021. "Fuel constrained dynamic economic dispatch with demand side management," Energy, Elsevier, vol. 223(C).
    10. Mayank Singh & Rakesh Chandra Jha, 2019. "Object-Oriented Usability Indices for Multi-Objective Demand Side Management Using Teaching-Learning Based Optimization," Energies, MDPI, vol. 12(3), pages 1-25, January.
    11. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
    12. Jianfeng Li & Dongxiao Niu & Ming Wu & Yongli Wang & Fang Li & Huanran Dong, 2018. "Research on Battery Energy Storage as Backup Power in the Operation Optimization of a Regional Integrated Energy System," Energies, MDPI, vol. 11(11), pages 1-20, November.
    13. Li Han & Rongchang Zhang & Xuesong Wang & Yu Dong, 2018. "Multi-Time Scale Rolling Economic Dispatch for Wind/Storage Power System Based on Forecast Error Feature Extraction," Energies, MDPI, vol. 11(8), pages 1-27, August.
    14. Sourav Basak & Bishwajit Dey & Biplab Bhattacharyya, 2023. "Uncertainty-based dynamic economic dispatch for diverse load and wind profiles using a novel hybrid algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4723-4763, May.
    15. Xiuyun Wang & Jian Wang & Biyuan Tian & Yang Cui & Yu Zhao, 2018. "Economic Dispatch of the Low-Carbon Green Certificate with Wind Farms Based on Fuzzy Chance Constraints," Energies, MDPI, vol. 11(4), pages 1-19, April.
    16. Wei-Tzer Huang & Kai-Chao Yao & Ming-Ku Chen & Feng-Ying Wang & Cang-Hui Zhu & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2018. "Derivation and Application of a New Transmission Loss Formula for Power System Economic Dispatch," Energies, MDPI, vol. 11(2), pages 1-19, February.
    17. Lim, Kai Zhuo & Lim, Kang Hui & Wee, Xian Bin & Li, Yinan & Wang, Xiaonan, 2020. "Optimal allocation of energy storage and solar photovoltaic systems with residential demand scheduling," Applied Energy, Elsevier, vol. 269(C).
    18. Jon Martinez-Rico & Ekaitz Zulueta & Unai Fernandez-Gamiz & Ismael Ruiz de Argandoña & Mikel Armendia, 2020. "Forecast Error Sensitivity Analysis for Bidding in Electricity Markets with a Hybrid Renewable Plant Using a Battery Energy Storage System," Sustainability, MDPI, vol. 12(9), pages 1-18, April.
    19. Kansal, Veenus & Dhillon, J.S., 2022. "Ameliorated artificial hummingbird algorithm for coordinated wind-solar-thermal generation scheduling problem in multiobjective framework," Applied Energy, Elsevier, vol. 326(C).
    20. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7253-:d:408912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.