IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4378-d363411.html
   My bibliography  Save this article

A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry

Author

Listed:
  • Robert Guamán Rivera

    (Department of Electronics Engineering, Universidad Técnica Federico Santa María, Valparaíso 1680, Chile)

  • Rodrigo García Alvarado

    (Department of Design and theory of Architecture, Universidad de Bio-Bio, Concepción 1202, Chile)

  • Alejandro Martínez-Rocamora

    (ArDiTec, Department of Architectural Constructions II, IUACC, Higher Technical School of Building Engineering, Universidad de Sevilla, Av. Reina Mercedes 4-a, 41012 Sevilla, Spain)

  • Fernando Auat Cheein

    (Department of Electronics Engineering, Universidad Técnica Federico Santa María, Valparaíso 1680, Chile)

Abstract

The construction industry is currently technologically challenged to incorporate new developments for enhancing the process, such as the use of 3D printing for complex building structures, which is the aim of this brief. To do so, we show a systematic study regarding the usability and performance of mobile manipulators as displaceable 3D printing machinery in construction sites, with emphasis on the three main different existing mobile platforms: the car-like, the unicycle and the omnidirectional (mecanum wheeled), with an UR5 manipulator on them. To evaluate its performance, we propose the printing of the following building elements: helical, square, circular and mesh, with different sizes. As metrics, we consider the total control effort observed in the robots and the total tracking error associated with the energy consumed in the activity to get a more sustainable process. In addition, to further test our work, we constrained the robot workspace thus resembling real life construction sites. In general, the statistical results show that the omnidirectional platform presents the best results –lowest tracking error and lowest control effort– for circular, helicoidal and mesh building elements; and car-like platform shows the best results for square-like building element. Then, an innovative performance analysis is achieved for the printing of building elements, with a contribution to the reduction of energy consumption.

Suggested Citation

  • Robert Guamán Rivera & Rodrigo García Alvarado & Alejandro Martínez-Rocamora & Fernando Auat Cheein, 2020. "A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry," Sustainability, MDPI, vol. 12(11), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4378-:d:363411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaoxiong Li & Le Liu & Changhai Peng, 2020. "A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges," Sustainability, MDPI, vol. 12(4), pages 1-36, February.
    2. Behrokh Khoshnevis & Dooil Hwang & Ke-Thia Yao & Zhenghao Yeh, 2006. "Mega-scale fabrication by Contour Crafting," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 1(3), pages 301-320.
    3. Andrej Tibaut & Danijel Rebolj & Matjaž Nekrep Perc, 2016. "Interoperability requirements for automated manufacturing systems in construction," Journal of Intelligent Manufacturing, Springer, vol. 27(1), pages 251-262, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madeleine Hoeft & Marianne Pieper & Kent Eriksson & Hans-Joachim Bargstädt, 2021. "Toward Life Cycle Sustainability in Infrastructure: The Role of Automation and Robotics in PPP Projects," Sustainability, MDPI, vol. 13(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Reza Khosravani & Azadeh Haghighi, 2022. "Large-Scale Automated Additive Construction: Overview, Robotic Solutions, Sustainability, and Future Prospect," Sustainability, MDPI, vol. 14(15), pages 1-30, August.
    2. Ghada Elshafei & Silvia Vilcekova & Martina Zelenakova & Abdelazim M. Negm, 2021. "Towards an Adaptation of Efficient Passive Design for Thermal Comfort Buildings," Sustainability, MDPI, vol. 13(17), pages 1-23, August.
    3. Maria Kaszyńska & Szymon Skibicki & Marcin Hoffmann, 2020. "3D Concrete Printing for Sustainable Construction," Energies, MDPI, vol. 13(23), pages 1-28, December.
    4. Wurong Fu, 2021. "Macroscopic numerical model of reinforced concrete shear walls based on material properties," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1401-1410, June.
    5. Minsu Cha & Chang-Won Kim & Taehee Lee & Baek-Joong Kim & Hunhee Cho & Taehoon Kim & Hyunsu Lim, 2022. "An Optimal Layout Model of Curved Panels for Using 3D Printing," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    6. Zhou, Kai & Leng, Jia-Wei, 2023. "State-of-the-art research of performance-driven architectural design for low-carbon urban underground space: Systematic review and proposed design strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Aiman Mohammed & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng & Zeeshan Zaheer & Safwan Sadeq & Mahmood Mohammed & Hooman Mehdizadeh-Rad, 2022. "Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    8. Madeleine Hoeft & Marianne Pieper & Kent Eriksson & Hans-Joachim Bargstädt, 2021. "Toward Life Cycle Sustainability in Infrastructure: The Role of Automation and Robotics in PPP Projects," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    9. Joseph J. Assaad & Abdallah Abou Yassin & Fatima Alsakka & Farook Hamzeh, 2020. "A Modular Approach for Steel Reinforcing of 3D Printed Concrete—Preliminary Study," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    10. Zhanzhao Li & Maryam Hojati & Zhengyu Wu & Jonathon Piasente & Negar Ashrafi & José P. Duarte & Shadi Nazarian & Sven G. Bilén & Ali M. Memari & Aleksandra Radlińska, 2020. "Fresh and Hardened Properties of Extrusion-Based 3D-Printed Cementitious Materials: A Review," Sustainability, MDPI, vol. 12(14), pages 1-34, July.
    11. Jiaxing Wang & Sibin Gao & Zhejun Tang & Dapeng Tan & Bin Cao & Jing Fan, 2023. "A context-aware recommendation system for improving manufacturing process modeling," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1347-1368, March.
    12. Stelladriana Volpe & Valentino Sangiorgio & Andrea Petrella & Armando Coppola & Michele Notarnicola & Francesco Fiorito, 2021. "Building Envelope Prefabricated with 3D Printing Technology," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    13. Hou, Dan & Huang, Jiayu & Wang, Yanyu, 2023. "A comparison of approaches with different constraint handling techniques for energy-efficient building form optimization," Energy, Elsevier, vol. 277(C).
    14. Omid Davtalab & Ali Kazemian & Xiao Yuan & Behrokh Khoshnevis, 2022. "Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 771-784, March.
    15. João Teixeira & Cecília Ogliari Schaefer & Lino Maia & Bárbara Rangel & Rui Neto & Jorge Lino Alves, 2022. "Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials," Sustainability, MDPI, vol. 14(7), pages 1-9, March.
    16. Ana S. Guimarães & João M. P. Q. Delgado & Sandra S. Lucas, 2021. "Advanced Manufacturing in Civil Engineering," Energies, MDPI, vol. 14(15), pages 1-14, July.
    17. Finn G. Feldmann, 2022. "Towards Lean Automation in Construction—Exploring Barriers to Implementing Automation in Prefabrication," Sustainability, MDPI, vol. 14(19), pages 1-22, October.
    18. Anna Staniewska & Izabela Sykta & Agnieszka Ozimek & Krzysztof Barnaś & Mariusz Dudek & Magdalena Marasik & Kinga Racoń-Leja, 2023. "Framework for the Design of a Small Transport Hub as an Interdisciplinary Challenge to Implement Sustainable Solutions," Sustainability, MDPI, vol. 15(14), pages 1-32, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4378-:d:363411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.