IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4023-d358216.html
   My bibliography  Save this article

Modeling and Uncertainty Analysis of Groundwater Level Using Six Evolutionary Optimization Algorithms Hybridized with ANFIS, SVM, and ANN

Author

Listed:
  • Akram Seifi

    (Department of Water Science & Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran)

  • Mohammad Ehteram

    (Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan 35131-19111, Iran)

  • Vijay P. Singh

    (Department of Biological and Agricultural Engineering & Zachry Department of Civil Engineering Texas A&M University College Station, Texas, TX 77843-2117, USA)

  • Amir Mosavi

    (Thuringian Institute of Sustainability and Climate Protection, 07743 Jena, Germany
    Institute of Automation, Obuda University, 1034 Budapest, Hungary
    Department of Mathematics and Informatics, J. Selye University, 94501 Komarno, Slovakia
    Institute of Structural Mechanics, Bauhaus-Universität Weimar, 99423 Weimar, Germany)

Abstract

In the present study, six meta-heuristic schemes are hybridized with artificial neural network (ANN), adaptive neuro-fuzzy interface system (ANFIS), and support vector machine (SVM), to predict monthly groundwater level (GWL), evaluate uncertainty analysis of predictions and spatial variation analysis. The six schemes, including grasshopper optimization algorithm (GOA), cat swarm optimization (CSO), weed algorithm (WA), genetic algorithm (GA), krill algorithm (KA), and particle swarm optimization (PSO), were used to hybridize for improving the performance of ANN, SVM, and ANFIS models. Groundwater level (GWL) data of Ardebil plain (Iran) for a period of 144 months were selected to evaluate the hybrid models. The pre-processing technique of principal component analysis (PCA) was applied to reduce input combinations from monthly time series up to 12-month prediction intervals. The results showed that the ANFIS-GOA was superior to the other hybrid models for predicting GWL in the first piezometer (RMSE:1.21, MAE:0.878, NSE:0.93, PBIAS:0.15, R 2 :0.93), second piezometer (RMSE:1.22, MAE:0.881, NSE:0.92, PBIAS:0.17, R 2 :0.94), and third piezometer (RMSE:1.23, MAE:0.911, NSE:0.91, PBIAS:0.19, R 2 :0.94) in the testing stage. The performance of hybrid models with optimization algorithms was far better than that of classical ANN, ANFIS, and SVM models without hybridization. The percent of improvements in the ANFIS-GOA versus standalone ANFIS in piezometer 10 were 14.4%, 3%, 17.8%, and 181% for RMSE, MAE, NSE, and PBIAS in training stage and 40.7%, 55%, 25%, and 132% in testing stage, respectively. The improvements for piezometer 6 in train step were 15%, 4%, 13%, and 208% and in test step were 33%, 44.6%, 16.3%, and 173%, respectively, that clearly confirm the superiority of developed hybridization schemes in GWL modelling. Uncertainty analysis showed that ANFIS-GOA and SVM had, respectively, the best and worst performances among other models. In general, GOA enhanced the accuracy of the ANFIS, ANN, and SVM models.

Suggested Citation

  • Akram Seifi & Mohammad Ehteram & Vijay P. Singh & Amir Mosavi, 2020. "Modeling and Uncertainty Analysis of Groundwater Level Using Six Evolutionary Optimization Algorithms Hybridized with ANFIS, SVM, and ANN," Sustainability, MDPI, vol. 12(10), pages 1-42, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4023-:d:358216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maryam Malekzadeh & Saeid Kardar & Keivan Saeb & Saeid Shabanlou & Lobat Taghavi, 2019. "A Novel Approach for Prediction of Monthly Ground Water Level Using a Hybrid Wavelet and Non-Tuned Self-Adaptive Machine Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1609-1628, March.
    2. S. Mohanty & Madan Jha & S. Raul & R. Panda & K. Sudheer, 2015. "Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5521-5532, December.
    3. Sheelabhadra Mohanty & Madan Jha & Ashwani Kumar & K. Sudheer, 2010. "Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1845-1865, July.
    4. Vahid Moosavi & Mehdi Vafakhah & Bagher Shirmohammadi & Negin Behnia, 2013. "A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1301-1321, March.
    5. Ioannis Trichakis & Ioannis Nikolos & G. Karatzas, 2011. "Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1143-1152, March.
    6. Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.
    7. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abu Reza Md. Towfiqul Islam & Swapan Talukdar & Shumona Akhter & Kutub Uddin Eibek & Md. Mostafizur Rahman & Swades Pal & Mohd Waseem Naikoo & Atiqur Rahman & Amir Mosavi, 2022. "Assessing the Impact of the Farakka Barrage on Hydrological Alteration in the Padma River with Future Insight," Sustainability, MDPI, vol. 14(9), pages 1-26, April.
    2. Haibo Chu & Jianmin Bian & Qi Lang & Xiaoqing Sun & Zhuoqi Wang, 2022. "Daily Groundwater Level Prediction and Uncertainty Using LSTM Coupled with PMI and Bootstrap Incorporating Teleconnection Patterns Information," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    3. Thi-Minh-Trang Huynh & Chuen-Fa Ni & Yu-Sheng Su & Vo-Chau-Ngan Nguyen & I-Hsien Lee & Chi-Ping Lin & Hoang-Hiep Nguyen, 2022. "Predicting Heavy Metal Concentrations in Shallow Aquifer Systems Based on Low-Cost Physiochemical Parameters Using Machine Learning Techniques," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    4. Vahid Nourani & Nardin Jabbarian Paknezhad & Hitoshi Tanaka, 2021. "Prediction Interval Estimation Methods for Artificial Neural Network (ANN)-Based Modeling of the Hydro-Climatic Processes, a Review," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    5. Héctor Migallón & Akram Belazi & José-Luis Sánchez-Romero & Héctor Rico & Antonio Jimeno-Morenilla, 2020. "Settings-Free Hybrid Metaheuristic General Optimization Methods," Mathematics, MDPI, vol. 8(7), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
    2. Haijiao Yu & Xiaohu Wen & Qi Feng & Ravinesh C. Deo & Jianhua Si & Min Wu, 2018. "Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 301-323, January.
    3. Sandra M. Guzman & Joel O. Paz & Mary Love M. Tagert, 2017. "The Use of NARX Neural Networks to Forecast Daily Groundwater Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1591-1603, March.
    4. Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.
    5. Xianming Dou & Yongguo Yang & Jinhui Luo, 2018. "Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    6. Mohammad Naderianfar & Jamshid Piri & Ozgur Kisi, 2017. "Pre-processing data to predict groundwater levels using the fuzzy standardized evapotranspiration and precipitation index (SEPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4433-4448, November.
    7. Kostić, Srđan & Stojković, Milan & Guranov, Iva & Vasović, Nebojša, 2019. "Revealing the background of groundwater level dynamics: Contributing factors, complex modeling and engineering applications," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 408-421.
    8. S. Mohanty & Madan Jha & S. Raul & R. Panda & K. Sudheer, 2015. "Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5521-5532, December.
    9. Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    10. Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.
    11. Saad AlAyyash & A’kif Al-Fugara & Rania Shatnawi & Abdel Rahman Al-Shabeeb & Rida Al-Adamat & Hani Al-Amoush, 2023. "Combination of Metaheuristic Optimization Algorithms and Machine Learning Methods for Groundwater Potential Mapping," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    12. Vahid Habibi & Hasan Ahmadi & Mohammad Jafari & Abolfazl Moeini, 2019. "Application of nonlinear models and groundwater index to predict desertification case study: Sharifabad watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 715-733, November.
    13. Afshin Khoshand, 2021. "Application of artificial intelligence in groundwater ecosystem protection: a case study of Semnan/Sorkheh plain, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16617-16631, November.
    14. Zhenfang He & Yaonan Zhang & Qingchun Guo & Xueru Zhao, 2014. "Comparative Study of Artificial Neural Networks and Wavelet Artificial Neural Networks for Groundwater Depth Data Forecasting with Various Curve Fractal Dimensions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5297-5317, December.
    15. Seyed Ahmad Soleymani & Shidrokh Goudarzi & Mohammad Hossein Anisi & Wan Haslina Hassan & Mohd Yamani Idna Idris & Shahaboddin Shamshirband & Noorzaily Mohamed Noor & Ismail Ahmedy, 2016. "A Novel Method to Water Level Prediction using RBF and FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3265-3283, July.
    16. Adib Roshani & Mehdi Hamidi, 2022. "Groundwater Level Fluctuations in Coastal Aquifer: Using Artificial Neural Networks to Predict the Impacts of Climatical CMIP6 Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 3981-4001, September.
    17. Maryam Shafaei & Ozgur Kisi, 2016. "Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 79-97, January.
    18. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    19. Stephen Afrifa & Tao Zhang & Peter Appiahene & Vijayakumar Varadarajan, 2022. "Mathematical and Machine Learning Models for Groundwater Level Changes: A Systematic Review and Bibliographic Analysis," Future Internet, MDPI, vol. 14(9), pages 1-31, August.
    20. Rana Muhammad Adnan & Kulwinder Singh Parmar & Salim Heddam & Shamsuddin Shahid & Ozgur Kisi, 2021. "Suspended Sediment Modeling Using a Heuristic Regression Method Hybridized with Kmeans Clustering," Sustainability, MDPI, vol. 13(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4023-:d:358216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.