IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p3995-d357669.html
   My bibliography  Save this article

Comparing Water Use Forecasting Model Selection Criteria: The Case of Commercial, Institutional, and Industrial Sector in Southern California

Author

Listed:
  • Dilek Uz

    (Department of Economics, University of Nevada, Reno, NV 89557, USA)

  • Steven Buck

    (Department of Agricultural Economics, University of Kentucky, Lexington, KY 40506, USA)

Abstract

The United States is one of the largest per capita water withdrawers in the world, and certain parts of it, especially the western region, have long experienced water scarcity. Historically, the U.S. relied on large water infrastructure investments and planning to solve its water scarcity problems. These large-scale investments as well as water planning activities rely on water forecast studies conducted by water managing agencies. These forecasts, while key to the sustainable management of water, are usually done using historical growth extrapolation, conventional econometric approaches, or legacy software packages and often do not utilize methods common in the field of statistical learning. The objective of this study is to illustrate the extent to which forecast outcomes for commercial, institutional and industrial water use may be improved with a relatively simple adjustment to forecast model selection. To do so, we estimate over 352 thousand regression models with retailer level panel data from the largest utility in the U.S., featuring a rich set of variables to model commercial, institutional, and industrial water use in Southern California. Out-of-sample forecasting performances of those models that rank within the top 5% based on various in- and out-of-sample goodness-of-fit criteria were compared. We demonstrate that models with the best in-sample fit yeild, on average, larger forecast errors for out-of-sample forecast exercises and are subject to a significant degree of variation in forecasts. We find that out-of-sample forecast error and the variability in the forecast values can be reduced by an order of magnitude with a relatively straightforward change in the model selection criteria even when the forecast modelers do not have access to “big data” or utilize state-of-the-art machine learning techniques.

Suggested Citation

  • Dilek Uz & Steven Buck, 2020. "Comparing Water Use Forecasting Model Selection Criteria: The Case of Commercial, Institutional, and Industrial Sector in Southern California," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:3995-:d:357669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/3995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/3995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    2. Arnaud Reynaud, 2003. "An Econometric Estimation of Industrial Water Demand in France," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(2), pages 213-232, June.
    3. Brent, Daniel A. & Ward, Michael B., 2019. "Price perceptions in water demand," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    4. M. Froukh, 2001. "Decision-Support System for Domestic Water Demand Forecasting and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(6), pages 363-382, December.
    5. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    6. Frederick G. Babin & Cleve E. Willis & P. Geoffrey Allen, 1982. "Estimation of Substitution Possibilities between Water and Other Production Inputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(1), pages 148-151.
    7. Daniel A. Brent & Joseph H. Cook & Skylar Olsen, 2015. "Social Comparisons, Household Water Use, and Participation in Utility Conservation Programs: Evidence from Three Randomized Trials," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 597-627.
    8. Maximilian Auffhammer & Ralf Steinhauser, 2012. "Forecasting The Path of U.S. CO_2 Emissions Using State-Level Information," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 172-185, February.
    9. Steven Renzetti, 1992. "Estimating the Structure of Industrial Water Demands: The Case of Canadian Manufacturing," Land Economics, University of Wisconsin Press, vol. 68(4), pages 396-404.
    10. Paul J. Ferraro & Juan Jose Miranda & Michael K. Price, 2011. "The Persistence of Treatment Effects with Norm-Based Policy Instruments: Evidence from a Randomized Environmental Policy Experiment," American Economic Review, American Economic Association, vol. 101(3), pages 318-322, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramón Barberán & Julio López-Laborda & Fernando Rodrigo, 2022. "The Perception of Residential Water Tariff, Consumption, and Cost: Evidence of its Determinants Using Survey Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 2933-2952, July.
    2. Stefano Clò & Tommaso Reggiani & Sabrina Ruberto, 2023. "Consumption feedback and water saving: An experiment in the metropolitan area of Milan," MUNI ECON Working Papers 2023-02, Masaryk University, revised Aug 2024.
    3. Jos順鲥s & Arnaud Reynaud & Alban Thomas, 2012. "Water reuse in Brazilian manufacturing firms," Applied Economics, Taylor & Francis Journals, vol. 44(11), pages 1417-1427, April.
    4. repec:npf:wpaper:12 is not listed on IDEAS
    5. repec:ind:nipfwp:12 is not listed on IDEAS
    6. Elinder, Mikael & Hu, Xiao & Liang, Che-Yuan, 2021. "Water conservation and the common pool problem: Can pricing address free-riding in residential hot water consumption?," CERE Working Papers 2021:12, CERE - the Center for Environmental and Resource Economics.
    7. Vallés-Giménez, Jaime & Zárate-Marco , Anabel, 2013. "Environmental taxation and industrial water use in Spain," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 25, pages 133-162.
    8. Worthington, Andrew C., 2010. "Commercial and Industrial Water Demand Estimation: Theoretical and Methodological Guidelines for Applied Economics Research/Estimación de la demanda de agua comercial e industrial: pautas teóricas y m," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 237-258, Agosto.
    9. Tobarra-González, Miguel Ángel, 2018. "The Value of Water in the Manufacture Industry and its Implications for Water Demand Policies. The Case of Chile /Valor del agua en la industria manufacturera de Chile y sus implicaciones para las pol," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 945-960, Septiembr.
    10. Kumar, Surender, 2004. "Analysing industrial water demand in India: An input distance function approach," Working Papers 04/12, National Institute of Public Finance and Policy.
    11. Fernando Arbués & Maria García-Valiñas & Inmaculada Villanúa, 2010. "Urban Water Demand for Service and Industrial Use: The Case of Zaragoza," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4033-4048, November.
    12. Jessoe, Katrina & Lade, Gabriel E. & Loge, Frank & Spang, Edward, 2021. "Residential water conservation during drought: Experimental evidence from three behavioral interventions," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    13. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    14. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    15. Anna Jędrejek & Rafał Pudełko, 2023. "Exploring the Potential Use of Sentinel-1 and 2 Satellite Imagery for Monitoring Winter Wheat Growth under Agricultural Drought Conditions in North-Western Poland," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    16. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    17. Fuente, David & Kabubo-Mariara, Jane & Kimuyu, Peter & Mwaura, Mbutu & Whittington, Dale, 2017. "Assessing the Performance of Alternative Water and Sanitation Tariffs: The Case of Nairobi, Kenya," EfD Discussion Paper 17-21, Environment for Development, University of Gothenburg.
    18. Andor, Mark A. & Gerster, Andreas & Peters, Jörg & Schmidt, Christoph M., 2020. "Social Norms and Energy Conservation Beyond the US," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    19. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    20. Céline Nauges & Dale Whittington, 2019. "Social Norms Information Treatments in the Municipal Water Supply Sector: Some New Insights on Benefits and Costs," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-40, July.
    21. Garcia, Serge & Reynaud, Arnaud, 2004. "Estimating the benefits of efficient water pricing in France," Resource and Energy Economics, Elsevier, vol. 26(1), pages 1-25, March.
    22. Cattaneo, Cristina & D’Adda, Giovanna & Tavoni, Massimo & Bonan, Jacopo, 2019. "Can We Make Social Information Programs More Effective? The Role of Identity and Values," RFF Working Paper Series 19-21, Resources for the Future.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:3995-:d:357669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.