IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i9p2604-d228643.html
   My bibliography  Save this article

Direct Power Control of Matrix Converter-Fed DFIG with Fixed Switching Frequency

Author

Listed:
  • Arzhang Yousefi-Talouki

    (ABB Oy, Valimopolku 4, 00380 Helsinki, Finland)

  • Shaghayegh Zalzar

    (Department of Energy, Politecnico di Torino, 10129 Turin, Italy)

  • Edris Pouresmaeil

    (Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland)

Abstract

In this paper, a direct power control (DPC) technique is proposed for matrix converter-fed grid-connected doubly fed induction generators (DFIGs). In contrast to what has been investigated in the past for direct torque control (DTC) or DPC of matrix converter-fed DFIGs, the active and reactive powers are regulated in a fixed switching frequency using indirect space vector modulation (ISVM) technique. Hence, designing input filters for matrix converters (MCs) becomes convenient. In addition, the reactive component of input side of MC is controlled which leads to reduction of distortion in grid current waveform. Also, an extensive discussion is addressed for nonlinear voltage errors of MC that may cause inaccurate power control. Simulation results done in MATLAB/Simulink show the effectiveness of the proposed method.

Suggested Citation

  • Arzhang Yousefi-Talouki & Shaghayegh Zalzar & Edris Pouresmaeil, 2019. "Direct Power Control of Matrix Converter-Fed DFIG with Fixed Switching Frequency," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2604-:d:228643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/9/2604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/9/2604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Manuel Godinho Rodrigues & Radu Godina & Mousa Marzband & Edris Pouresmaeil, 2018. "Simulation and Comparison of Mathematical Models of PV Cells with Growing Levels of Complexity," Energies, MDPI, vol. 11(11), pages 1-21, October.
    2. Mehdi Tavakkoli & Jafar Adabi & Sasan Zabihi & Radu Godina & Edris Pouresmaeil, 2018. "Reserve Allocation of Photovoltaic Systems to Improve Frequency Stability in Hybrid Power Systems," Energies, MDPI, vol. 11(10), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Tomasz Sieńko & Jerzy Szczepanik & Claudia Martis, 2020. "Reactive Power Transfer via Matrix Converter Controlled by the “One Periodical” Algorithm," Energies, MDPI, vol. 13(3), pages 1-14, February.
    3. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    4. A. Padmaja & Allusivala Shanmukh & Siva Subrahmanyam Mendu & Ramesh Devarapalli & Javier Serrano González & Fausto Pedro García Márquez, 2021. "Design of Capacitive Bridge Fault Current Limiter for Low-Voltage Ride-Through Capacity Enrichment of Doubly Fed Induction Generator-Based Wind Farm," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    5. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    6. Zahra Malekjamshidi & Mohammad Jafari & Jianguo Zhu & Marco Rivera, 2020. "Design, Implementation, and Stability Analysis of a Space Vector Modulated Direct Matrix Converter for Power Flow Control in a More Reliable and Sustainable Microgrid," Sustainability, MDPI, vol. 12(20), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thiago B. Murari & Aloisio S. Nascimento Filho & Marcelo A. Moret & Sergio Pitombo & Alex A. B. Santos, 2020. "Self-Affine Analysis of ENSO in Solar Radiation," Energies, MDPI, vol. 13(18), pages 1-17, September.
    2. Ehsan Norouzzadeh & Ahmad Ale Ahmad & Meysam Saeedian & Gholamreza Eini & Edris Pouresmaeil, 2019. "Design and Implementation of a New Algorithm for Enhancing MPPT Performance in Solar Cells," Energies, MDPI, vol. 12(3), pages 1-17, February.
    3. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    4. Martin Libra & Milan Daneček & Jan Lešetický & Vladislav Poulek & Jan Sedláček & Václav Beránek, 2019. "Monitoring of Defects of a Photovoltaic Power Plant Using a Drone," Energies, MDPI, vol. 12(5), pages 1-9, February.
    5. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    6. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    7. Xilin Zhao & Zhenyu Lin & Bo Fu & Li He & Na Fang, 2018. "Research on Automatic Generation Control with Wind Power Participation Based on Predictive Optimal 2-Degree-of-Freedom PID Strategy for Multi-area Interconnected Power System," Energies, MDPI, vol. 11(12), pages 1-17, November.
    8. Abdelali El Aroudi & Mohamed Al-Numay & Germain Garcia & Khalifa Al Hossani & Naji Al Sayari & Angel Cid-Pastor, 2018. "Analysis of Nonlinear Dynamics of a Quadratic Boost Converter Used for Maximum Power Point Tracking in a Grid-Interlinked PV System," Energies, MDPI, vol. 12(1), pages 1-23, December.
    9. Germán Herrera Vidal & Jairo R. Coronado-Hernández & Claudia Minnaard, 2023. "Measuring manufacturing system complexity: a literature review," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2865-2888, October.
    10. Lei Liu & Hidehito Matayoshi & Mohammed Elsayed Lotfy & Manoj Datta & Tomonobu Senjyu, 2018. "Load Frequency Control Using Demand Response and Storage Battery by Considering Renewable Energy Sources," Energies, MDPI, vol. 11(12), pages 1-40, December.
    11. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    12. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    13. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
    14. Jishu Mary Gomez & Prabhakar Karthikeyan Shanmugam, 2022. "Flexible Power Point Tracking Using a Neural Network for Power Reserve Control in a Grid-Connected PV System," Energies, MDPI, vol. 15(21), pages 1-17, November.
    15. Jiafeng Ren & Haifeng Liang & Yajing Gao, 2019. "Research on Evaluation of Power Supply Capability of Active Distribution Network with Distributed Power Supply with High Permeability," Energies, MDPI, vol. 12(11), pages 1-17, June.
    16. Ancheng Xue & Jiehao Cui & Jiawei Wang & Joe H. Chow & Lei Yue & Tianshu Bi, 2018. "A New Transient Frequency Acceptability Margin Based on the Frequency Trajectory," Energies, MDPI, vol. 12(1), pages 1-18, December.
    17. Partha Pratim Dey & Dulal Chandra Das & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Active Power Management of Virtual Power Plant under Penetration of Central Receiver Solar Thermal-Wind Using Butterfly Optimization Technique," Sustainability, MDPI, vol. 12(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2604-:d:228643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.