IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p665-d316446.html
   My bibliography  Save this article

Reactive Power Transfer via Matrix Converter Controlled by the “One Periodical” Algorithm

Author

Listed:
  • Tomasz Sieńko

    (Faculty of Electrical and Computer Engineering, Cracow University of Technology, ul.Warszawska 24, 31-155 Kraków, Poland)

  • Jerzy Szczepanik

    (Faculty of Electrical and Computer Engineering, Cracow University of Technology, ul.Warszawska 24, 31-155 Kraków, Poland)

  • Claudia Martis

    (Faculty of Electrical Engineering, Technical University of Cluj-Napoca, Str. Memorandumului nr. 28, 400114 Cluj-Napoca, Romania)

Abstract

The article describes the application of a straight forward energy converter, a multiphase matrix converter (MC), as part of a device, connected parallel to the power grid, and able to supply variable reactive power flow to the power system. The research performed by authors included the development of control procedures for a multiphase MC, based on a new approach and power system (application) requirements. The multiphase MC structure (6 × 6, 12 × 12) was used since the proposed control procedure creates output as the combination of input voltages. The increased number of phases decreases the order of harmonics in the MC converter similarly as in multilevel converters. This manuscript concentrates on the mathematical analysis of MC work under the “one periodical” algorithm and links it introduces in the power system. The previously developed, spatial-temporal mathematical model of the MC was limited to the dominant (first) harmonic and applied between the grid and reactive load. The results obtained from the analysis of the model showed that, for the applied control procedure (one periodical algorithm), the output voltage is built only from positive or negative sequences of input voltage. Three cases were recognized where the sign input power factor depends on input voltage and control sequence as well as on the value of control frequency. The effects of the model simulation were compared to those obtained from the MATLAB simulation and from the real laboratory 30 kVA-rated model. The main factors analyzed during this research include the expected value and distortion of input current and sign of reactive input power.

Suggested Citation

  • Tomasz Sieńko & Jerzy Szczepanik & Claudia Martis, 2020. "Reactive Power Transfer via Matrix Converter Controlled by the “One Periodical” Algorithm," Energies, MDPI, vol. 13(3), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:665-:d:316446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janina Rząsa & Elżbieta Sztajmec, 2019. "Elimination of Common Mode Voltage in Three-To-Six-Phase Matrix Converter," Energies, MDPI, vol. 12(9), pages 1-18, May.
    2. Jianwei Zhang & Margarita Norambuena & Li Li & David Dorrell & Jose Rodriguez, 2019. "Sequential Model Predictive Control of Three-Phase Direct Matrix Converter," Energies, MDPI, vol. 12(2), pages 1-14, January.
    3. Arzhang Yousefi-Talouki & Shaghayegh Zalzar & Edris Pouresmaeil, 2019. "Direct Power Control of Matrix Converter-Fed DFIG with Fixed Switching Frequency," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    4. Gustavo Gontijo & Matheus Soares & Thiago Tricarico & Robson Dias & Mauricio Aredes & Josep Guerrero, 2019. "Direct Matrix Converter Topologies with Model Predictive Current Control Applied as Power Interfaces in AC, DC, and Hybrid Microgrids in Islanded and Grid-Connected Modes," Energies, MDPI, vol. 12(17), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartosz Rozegnał & Paweł Albrechtowicz & Dominik Mamcarz & Monika Rerak & Maciej Skaza, 2021. "The Power Losses in Cable Lines Supplying Nonlinear Loads," Energies, MDPI, vol. 14(5), pages 1-15, March.
    2. Pawel Szczepankowski & Natalia Strzelecka & Enrique Romero-Cadaval, 2021. "A New Approach to the PWM Modulation for the Multiphase Matrix Converters Supplying Loads with Open-End Winding," Energies, MDPI, vol. 14(2), pages 1-20, January.
    3. Jerzy Szczepanik & Tomasz Sieńko, 2021. "Intuitive Multiphase Matrix Converter Control Procedures Applied to Power-System Phase Shifters," Energies, MDPI, vol. 14(15), pages 1-18, July.
    4. Paweł Albrechtowicz & Jerzy Szczepanik, 2021. "The Comparative Analysis of Phase Shifting Transformers," Energies, MDPI, vol. 14(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahra Malekjamshidi & Mohammad Jafari & Jianguo Zhu & Marco Rivera, 2020. "Design, Implementation, and Stability Analysis of a Space Vector Modulated Direct Matrix Converter for Power Flow Control in a More Reliable and Sustainable Microgrid," Sustainability, MDPI, vol. 12(20), pages 1-26, October.
    2. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    3. Janina Rząsa & Elżbieta Sztajmec, 2020. "Elimination of Common Mode Voltage in the Three-To-Nine-Phase Matrix Converter," Energies, MDPI, vol. 13(3), pages 1-20, February.
    4. Gustavo Gontijo & Songda Wang & Tamas Kerekes & Remus Teodorescu, 2020. "New AC–AC Modular Multilevel Converter Solution for Medium-Voltage Machine-Drive Applications: Modular Multilevel Series Converter," Energies, MDPI, vol. 13(14), pages 1-48, July.
    5. Shuang Feng & Chaofan Wei & Jiaxing Lei, 2019. "Reduction of Prediction Errors for the Matrix Converter with an Improved Model Predictive Control," Energies, MDPI, vol. 12(15), pages 1-20, August.
    6. Janina Rząsa, 2020. "Modulation Strategy for Multi-Phase Matrix Converter with Common Mode Voltage Elimination and Adjustment of the Input Displacement Angle," Energies, MDPI, vol. 13(3), pages 1-21, February.
    7. Sergio Toledo & Edgar Maqueda & Marco Rivera & Raúl Gregor & Pat Wheeler & Carlos Romero, 2020. "Improved Predictive Control in Multi-Modular Matrix Converter for Six-Phase Generation Systems," Energies, MDPI, vol. 13(10), pages 1-13, May.
    8. Duberney Murillo-Yarce & Baldomero Araya & Carlos Restrepo & Marco Rivera & Patrick Wheeler, 2023. "Impact of Sequential Model Predictive Control on Induction Motor Performance: Comparison of Converter Topologies," Mathematics, MDPI, vol. 11(4), pages 1-21, February.
    9. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    11. Pawel Szczesniak, 2019. "Challenges and Design Requirements for Industrial Applications of AC/AC Power Converters without DC-Link," Energies, MDPI, vol. 12(8), pages 1-18, April.
    12. Jerzy Szczepanik & Tomasz Sieńko, 2021. "Intuitive Multiphase Matrix Converter Control Procedures Applied to Power-System Phase Shifters," Energies, MDPI, vol. 14(15), pages 1-18, July.
    13. Bowei Zou & Yougui Guo & Xi Xiao & Bowen Yang & Xiao Wang & Mingzhang Shi & Yulin Tu, 2020. "Performance Improvement of Matrix Converter Direct Torque Control System," Energies, MDPI, vol. 13(12), pages 1-17, June.
    14. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    15. Sergio Toledo & David Caballero & Edgar Maqueda & Juan J. Cáceres & Marco Rivera & Raúl Gregor & Patrick Wheeler, 2022. "Predictive Control Applied to Matrix Converters: A Systematic Literature Review," Energies, MDPI, vol. 15(20), pages 1-30, October.
    16. A. Padmaja & Allusivala Shanmukh & Siva Subrahmanyam Mendu & Ramesh Devarapalli & Javier Serrano González & Fausto Pedro García Márquez, 2021. "Design of Capacitive Bridge Fault Current Limiter for Low-Voltage Ride-Through Capacity Enrichment of Doubly Fed Induction Generator-Based Wind Farm," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    17. Xue Lin & Lixia Sun & Ping Ju & Hongyu Li, 2019. "Stochastic Control for Intra-Region Probability Maximization of Multi-Machine Power Systems Based on the Quasi-Generalized Hamiltonian Theory," Energies, MDPI, vol. 13(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:665-:d:316446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.