IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i4p1187-d208590.html
   My bibliography  Save this article

Structure Dynamics and Risk Assessment of Water-Energy-Food Nexus: A Water Footprint Approach

Author

Listed:
  • Peng Zhang

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Zihan Xu

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Weiguo Fan

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Jiahui Ren

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Ranran Liu

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Xiaobin Dong

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

Abstract

The “Water-Energy-Food Nexus” is one of the present research hotspots in the field of sustainable development. Water resources are the key factors that limit local human survival and socioeconomic development in arid areas, and the water footprint is an important indicator for measuring sustainable development. In this study, the structural dynamics and complex relationships of the water-energy-food system in arid areas were analyzed from the perspective of the water footprint, and the risk characteristics were evaluated. The results show that: (1) Agriculture products and livestock products account for the largest water footprints (>90%), which is much higher than the water footprints of energy consumption (<5%). From the water footprint type, the blue water footprint (>50%) > the grey water footprint (20%–30%) > the green water footprint (<20%). (2) Since 2000, especially after 2005, while energy consumption drove rapid economic growth, it also led to the rapid expansion of the water footprint in the Manas River Basin. By 2015, the water deficit was relatively serious, with the surface water resource deficit reaching 16.21 × 10 8 m 3 . (3) The water-energy risk coupling degree of the water-energy-food system in this basin is comparatively significant, which means that it is facing the dual pressures of internal water shortage and external energy dependence, and it is vulnerable to global warming and fluctuations in the international and domestic energy markets. Thus, it is necessary to adjust the industrial structure through macroeconomic regulation and control, developing new energy sources, reducing the coupling degree of system risks, and achieving sustainable development.

Suggested Citation

  • Peng Zhang & Zihan Xu & Weiguo Fan & Jiahui Ren & Ranran Liu & Xiaobin Dong, 2019. "Structure Dynamics and Risk Assessment of Water-Energy-Food Nexus: A Water Footprint Approach," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1187-:d:208590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/4/1187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/4/1187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    2. Mark Howells & H-Holger Rogner, 2014. "Assessing integrated systems," Nature Climate Change, Nature, vol. 4(4), pages 246-247, April.
    3. Golam Rasul & Bikash Sharma, 2016. "The nexus approach to water–energy–food security: an option for adaptation to climate change," Climate Policy, Taylor & Francis Journals, vol. 16(6), pages 682-702, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hubert Hirwa & Qiuying Zhang & Yunfeng Qiao & Yu Peng & Peifang Leng & Chao Tian & Sayidjakhon Khasanov & Fadong Li & Alphonse Kayiranga & Fabien Muhirwa & Auguste Cesar Itangishaka & Gabriel Habiyare, 2021. "Insights on Water and Climate Change in the Greater Horn of Africa: Connecting Virtual Water and Water-Energy-Food-Biodiversity-Health Nexus," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    2. Guojing Li & Xinru Han & Qiyou Luo & Wenbo Zhu & Jing Zhao, 2021. "A Study on the Relationship between Income Change and the Water Footprint of Food Consumption in Urban China," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    3. Ahmad Hamidov & Katharina Helming, 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture," Sustainability, MDPI, vol. 12(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    2. Hubert Hirwa & Qiuying Zhang & Yunfeng Qiao & Yu Peng & Peifang Leng & Chao Tian & Sayidjakhon Khasanov & Fadong Li & Alphonse Kayiranga & Fabien Muhirwa & Auguste Cesar Itangishaka & Gabriel Habiyare, 2021. "Insights on Water and Climate Change in the Greater Horn of Africa: Connecting Virtual Water and Water-Energy-Food-Biodiversity-Health Nexus," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    3. Bassel Daher & Rabi H. Mohtar & Efstratios N. Pistikopoulos & Kent E. Portney & Ronald Kaiser & Walid Saad, 2018. "Developing Socio-Techno-Economic-Political (STEP) Solutions for Addressing Resource Nexus Hotspots," Sustainability, MDPI, vol. 10(2), pages 1-14, February.
    4. Candice Howarth & Katya Brooks, 2017. "Decision-Making and Building Resilience to Nexus Shocks Locally: Exploring Flooding and Heatwaves in the UK," Sustainability, MDPI, vol. 9(5), pages 1-16, May.
    5. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    6. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    7. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    8. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    9. Nazmul Huq & Antje Bruns & Lars Ribbe & Saleemul Huq, 2017. "Mainstreaming Ecosystem Services Based Climate Change Adaptation (EbA) in Bangladesh: Status, Challenges and Opportunities," Sustainability, MDPI, vol. 9(6), pages 1-20, June.
    10. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    11. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    12. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    13. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    14. Dula Etana & Denyse J. R. M. Snelder & Cornelia F. A. van Wesenbeeck & Tjard de Cock Buning, 2021. "The Impact of Adaptation to Climate Change and Variability on the Livelihood of Smallholder Farmers in Central Ethiopia," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    15. Naidoo, Dhesigen & Nhamo, Luxon & Mpandeli, Sylvester & Sobratee, Nafisa & Senzanje, Aidan & Liphadzi, Stanley & Slotow, Rob & Jacobson, Michael & Modi, Albert T. & Mabhaudhi, Tafadzwanashe, 2021. "Operationalising the water-energy-food nexus through the theory of change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Lowe, Benjamin H. & Oglethorpe, David R. & Choudhary, Sonal, 2020. "Comparing the economic value of virtual water with volumetric and stress-weighted approaches: A case for the tea supply chain," Ecological Economics, Elsevier, vol. 172(C).
    17. T. S. Amjath-Babu & Pramod K. Aggarwal & Sonja Vermeulen, 2019. "Climate action for food security in South Asia? Analyzing the role of agriculture in nationally determined contributions to the Paris agreement," Climate Policy, Taylor & Francis Journals, vol. 19(3), pages 283-298, March.
    18. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    19. S. Sunitha & A. U. Akash & M. N. Sheela & J. Suresh Kumar, 2024. "The water footprint of root and tuber crops," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 3021-3043, February.
    20. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1187-:d:208590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.