IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p563-d199807.html
   My bibliography  Save this article

Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors

Author

Listed:
  • Ewa Wojciechowska

    (Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland)

  • Nicole Nawrot

    (Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland)

  • Jolanta Walkusz-Miotk

    (Marine Geotoxicology Laboratory, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland)

  • Karolina Matej-Łukowicz

    (Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland)

  • Ksenia Pazdro

    (Marine Geotoxicology Laboratory, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland)

Abstract

Sediments of two urban streams in northern Poland outflowing to the Baltic Sea were assessed to explain the spatial variation in relation to urbanization level of the catchment, the role of retention tanks (RTs) and identification of pollution level. During the 3 month period of investigation sediment samples were collected from the inflow (IN) and outflow (OUT) of six RTs located on streams for flood protection. Six heavy metals (HMs) were investigated: Cu, Pb, Zn, Cd, Ni, Cr. The assessment of four geochemical enrichment indices used to quantify contamination of HMs in the sediments at IN and OUT samples was carried out. Contamination factor (CF), pollution load index (PLI), geoaccumulation index (I geo ) and potential ecological risk (RI) were calculated and the indices usefulness was assessed. Also, the hazard quotient (HQ) was calculated to assess health risk associated with dredging works. In sediments from RTs where paved surfaces constituted more than 70% of the catchment the HMs concentrations were from one to three times higher for Ni and from two to 143 times higher for Cu in comparison to soft catchment results. The extremely high Cu concentration (1114 mg/kg d.w.) found in sediments at RT Orłowska IN was most likely associated with large area of roofs covered with copper sheet. Calculation of CF, PLI, I geo , RI, HQ indicators allows for a complex and multi-dimensional assessment of sediment status. Among these, CF and PLI classified the analyzed sediments as most polluted. Basing on the sedimentary HMs concentrations the health risk level via dermal exposure pathway was assessed as low.

Suggested Citation

  • Ewa Wojciechowska & Nicole Nawrot & Jolanta Walkusz-Miotk & Karolina Matej-Łukowicz & Ksenia Pazdro, 2019. "Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:563-:d:199807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/563/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/563/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emmanuel Obeng-Gyasi, 2018. "Hepatobiliary Related Outcomes in US Adults Exposed to Lead," 2018 Stata Conference 81, Stata Users Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Sojka & Mariusz Ptak & Joanna Jaskuła & Vlerë Krasniqi, 2022. "Ecological and Health Risk Assessments of Heavy Metals Contained in Sediments of Polish Dam Reservoirs," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    2. Danica Fazekašová & František Petrovič & Juraj Fazekaš & Lenka Štofejová & Ivan Baláž & Filip Tulis & Tomáš Tóth, 2021. "Soil Contamination in the Problem Areas of Agrarian Slovakia," Land, MDPI, vol. 10(11), pages 1-14, November.
    3. Zhongya Fan & Wencai Wang & Chunyan Tang & Yiping Li & Zhong Wang & Shu Lin & Fantang Zeng, 2019. "Targeting Remediation Dredging by Ecological Risk Assessment of Heavy Metals in Lake Sediment: A Case Study of Shitang Lake, China," Sustainability, MDPI, vol. 11(24), pages 1-10, December.
    4. Danica Fazekašová & Juraj Fazekaš, 2020. "Soil Quality and Heavy Metal Pollution Assessment of Iron Ore Mines in Nizna Slana (Slovakia)," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    5. Jintao Li & Changjun Jiang & Zhanjun Xing, 2021. "Multi-dimensional influence measurement of urbanization on the quality of natural living environment in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12151-12168, August.
    6. Paweł Tomczyk & Bernard Gałka & Mirosław Wiatkowski & Bogna Buta & Łukasz Gruss, 2021. "Analysis of Spatial Distribution of Sediment Pollutants Accumulated in the Vicinity of a Small Hydropower Plant," Energies, MDPI, vol. 14(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai Gu & Bitian Fu & Ji Whan Ahn, 2020. "Simultaneous Removal of Residual Sulfate and Heavy Metals from Spent Electrolyte of Lead-Acid Battery after Precipitation and Carbonation," Sustainability, MDPI, vol. 12(3), pages 1-11, February.
    2. Gabriel M. Filippelli & Jessica Adamic & Deborah Nichols & John Shukle & Emeline Frix, 2018. "Mapping the Urban Lead Exposome: A Detailed Analysis of Soil Metal Concentrations at the Household Scale Using Citizen Science," IJERPH, MDPI, vol. 15(7), pages 1-11, July.
    3. Nurhayati A. Prihartono & Ratna Djuwita & Putri B. Mahmud & Budi Haryanto & Helda Helda & Tri Yunis Miko Wahyono & Timothy Dignam, 2019. "Prevalence of Blood Lead among Children Living in Battery Recycling Communities in Greater Jakarta, Indonesia," IJERPH, MDPI, vol. 16(7), pages 1-11, April.
    4. Shamshad Karatela & Christin Coomarasamy & Janis Paterson & Neil I. Ward, 2019. "Household Smoking Status and Heavy Metal Concentrations in Toenails of Children," IJERPH, MDPI, vol. 16(20), pages 1-12, October.
    5. Shiqi Tian & Shijie Wang & Xiaoyong Bai & Dequan Zhou & Guangjie Luo & Jinfeng Wang & Mingming Wang & Qian Lu & Yujie Yang & Zeyin Hu & Chaojun Li & Yuanhong Deng, 2019. "Hyperspectral Prediction Model of Metal Content in Soil Based on the Genetic Ant Colony Algorithm," Sustainability, MDPI, vol. 11(11), pages 1-21, June.
    6. Emmanuel Obeng-Gyasi & Rodrigo X. Armijos & M. Margaret Weigel & Gabriel M. Filippelli & M. Aaron Sayegh, 2018. "Cardiovascular-Related Outcomes in U.S. Adults Exposed to Lead," IJERPH, MDPI, vol. 15(4), pages 1-16, April.
    7. Jianhong Zhang & Min Wang & Keming Yang & Yanru Li & Yaxing Li & Bing Wu & Qianqian Han, 2022. "The New Hyperspectral Analysis Method for Distinguishing the Types of Heavy Metal Copper and Lead Pollution Elements," IJERPH, MDPI, vol. 19(13), pages 1-26, June.
    8. Kyriaki Kelektsoglou & Dimitra Karali & Alexandros Stavridis & Glykeria Loupa, 2018. "Efficiency of the Air-Pollution Control System of a Lead-Acid-Battery Recycling Industry," Energies, MDPI, vol. 11(12), pages 1-11, December.
    9. Hsin-Liang Liu & Hung-Yi Chuang & Chien-Ning Hsu & Su-Shin Lee & Chen-Cheng Yang & Kuan-Ting Liu, 2020. "Effects of Vitamin D Receptor, Metallothionein 1A, and 2A Gene Polymorphisms on Toxicity of the Peripheral Nervous System in Chronically Lead-Exposed Workers," IJERPH, MDPI, vol. 17(8), pages 1-12, April.
    10. Chien-Juan Chen & Ting-Yi Lin & Chao-Ling Wang & Chi-Kung Ho & Hung-Yi Chuang & Hsin-Su Yu, 2019. "Interactive Effects between Chronic Lead Exposure and the Homeostatic Iron Regulator Transport HFE Polymorphism on the Human Red Blood Cell Mean Corpuscular Volume (MCV)," IJERPH, MDPI, vol. 16(3), pages 1-9, January.
    11. Nisha Naicker & Pieter De Jager & Shan Naidoo & Angela Mathee, 2018. "Is There a Relationship between Lead Exposure and Aggressive Behavior in Shooters?," IJERPH, MDPI, vol. 15(7), pages 1-10, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:563-:d:199807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.