IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1248-d678897.html
   My bibliography  Save this article

Soil Contamination in the Problem Areas of Agrarian Slovakia

Author

Listed:
  • Danica Fazekašová

    (Department of Environmental Management, Faculty of Management, University of Prešov, Konštantínova 16, 080 01 Prešov, Slovakia)

  • František Petrovič

    (Department of Ecology and Environmental Sciences, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01 Nitra, Slovakia)

  • Juraj Fazekaš

    (Department of Environmental Management, Faculty of Management, University of Prešov, Konštantínova 16, 080 01 Prešov, Slovakia)

  • Lenka Štofejová

    (Department of Environmental Management, Faculty of Management, University of Prešov, Konštantínova 16, 080 01 Prešov, Slovakia)

  • Ivan Baláž

    (Department of Ecology and Environmental Sciences, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01 Nitra, Slovakia)

  • Filip Tulis

    (Department of Ecology and Environmental Sciences, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01 Nitra, Slovakia)

  • Tomáš Tóth

    (Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia)

Abstract

Landfills, old and abandoned mines, industrial sites, heaps, sludge ponds and other sources of pollution represent environmental threats and are characterized as chemical time bombs. This work is focused on the evaluation of soil contamination by risk elements using various indices (geoaccumulation index—I geo , enrichment factor—EF, contamination factor—C i f and degree of contamination—C d ). These selected agrarian problem areas are located in Slovakia, especially in the air pollution field of landfills consisting of power plant fly ash, tannery and footwear wastes, leachate (lúženec), iron ore slag, waste from metallurgy and sludge ponds in which coal sludge waste is deposited and waste from ore treatment. Nine research sites in the agrarian region of Slovak Republic were monitored. Ten risk elements (Fe, Mn, Zn, Cu, Co, Ni, Cr, Pb, Cd and Hg) and pH/H 2 O were included in this study and were determined in surface soils (of 0.05 m to 0.15 m) using atomic absorption spectrometry (AAS). Our study showed the highest exceedance of the limit values of risk elements in the order Ni (51.85 times) > Co (25.47 times) > Cd (13.70 times) > Cu (12.78 times) > Cr (8.37 times) > Fe (8.26 times) > Hg (7.94 times) > Zn (5.71 times) > Pb (4.63 times). The content of risk elements increased based on the average values of I geo in the order of Cr < Hg < Zn < Pb < Ni < Cu < Cd. I geo values for cadmium indicated mild-to-extreme contamination at all sites. We found the most significant enrichment in the order of Cd > Cu > Pb > Ni > Zn > Hg > Cr. EF values for cadmium indicated extremely high enrichment; the C i f and C d values indicated a very high degree of soil contamination near the nickel smelter landfill, an industrial metallurgical plant and old but active mines. The studied areas pose a serious danger not only to the soil but also to groundwater and biota due to the prevailing low soil reaction, which increases the mobility of toxic elements. The study provides important results for the development of effective strategies for the control and remediation of endangered areas.

Suggested Citation

  • Danica Fazekašová & František Petrovič & Juraj Fazekaš & Lenka Štofejová & Ivan Baláž & Filip Tulis & Tomáš Tóth, 2021. "Soil Contamination in the Problem Areas of Agrarian Slovakia," Land, MDPI, vol. 10(11), pages 1-14, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1248-:d:678897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1248/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1248/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haifang He & Longqing Shi & Guang Yang & Minsheng You & Liette Vasseur, 2020. "Ecological Risk Assessment of Soil Heavy Metals and Pesticide Residues in Tea Plantations," Agriculture, MDPI, vol. 10(2), pages 1-10, February.
    2. Na Wang & Jichang Han & Yang Wei & Gang Li & Yingying Sun, 2019. "Potential Ecological Risk and Health Risk Assessment of Heavy Metals and Metalloid in Soil around Xunyang Mining Areas," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    3. Ewa Wojciechowska & Nicole Nawrot & Jolanta Walkusz-Miotk & Karolina Matej-Łukowicz & Ksenia Pazdro, 2019. "Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    4. Xiaogang Ding & Zhengyong Zhao & Zisheng Xing & Shengting Li & Xiaochuan Li & Yanmei Liu, 2021. "Comparison of Models for Spatial Distribution and Prediction of Cadmium in Subtropical Forest Soils, Guangdong, China," Land, MDPI, vol. 10(9), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lubica Kozakova & Maria Kanuchova & Tomas Bakalar & Henrieta Pavolova, 2023. "The Characterization of Slovinky Sludge Bed Material Using Spectroscopic Methods," Sustainability, MDPI, vol. 15(10), pages 1-10, May.
    2. Ahmed Saleh & Yehia H. Dawood & Ahmed Gad, 2022. "Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes," Land, MDPI, vol. 11(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danica Fazekašová & Juraj Fazekaš, 2020. "Soil Quality and Heavy Metal Pollution Assessment of Iron Ore Mines in Nizna Slana (Slovakia)," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    2. Li Tan & Bin Yang & Zhibin Xue & Zhanqi Wang, 2021. "Assessing Heavy Metal Contamination Risk in Soil and Water in the Core Water Source Area of the Middle Route of the South-to-North Water Diversion Project, China," Land, MDPI, vol. 10(9), pages 1-24, September.
    3. Petru Cârdei & Cătălina Tudora & Valentin Vlăduț & Mirabela Augustina Pruteanu & Iuliana Găgeanu & Dan Cujbescu & Despina-Maria Bordean & Nicoleta Ungureanu & George Ipate & Oana Diana Cristea, 2021. "Mathematical Model to Simulate the Transfer of Heavy Metals from Soil to Plant," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    4. Oumayma Nassiri & Moulay Lâarabi EL Hachimi & Jean Paul Ambrosi & Ali Rhoujjati, 2021. "Contamination impact and human health risk in surface soils surrounding the abandoned mine of Zeïda, High Moulouya, Northeastern Morocco," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 17030-17059, November.
    5. Zhongya Fan & Wencai Wang & Chunyan Tang & Yiping Li & Zhong Wang & Shu Lin & Fantang Zeng, 2019. "Targeting Remediation Dredging by Ecological Risk Assessment of Heavy Metals in Lake Sediment: A Case Study of Shitang Lake, China," Sustainability, MDPI, vol. 11(24), pages 1-10, December.
    6. Yu Song & Wenlong Li & Yating Xue & Huakun Zhou & Wenying Wang & Chenli Liu, 2021. "Impact of Industrial Pollution of Cadmium on Traditional Crop Planting Areas and Land Management: A Case Study in Northwest China," Land, MDPI, vol. 10(12), pages 1-20, December.
    7. Mohamed E. Abowaly & Raafat A. Ali & Farahat S. Moghanm & Mohamed S. Gharib & Moustapha Eid Moustapha & Mohssen Elbagory & Alaa El-Dein Omara & Shimaa M. Elmahdy, 2022. "Assessment of Soil Degradation and Hazards of Some Heavy Metals, Using Remote Sensing and GIS Techniques in the Northern Part of the Nile Delta, Egypt," Agriculture, MDPI, vol. 13(1), pages 1-17, December.
    8. Paweł Tomczyk & Bernard Gałka & Mirosław Wiatkowski & Bogna Buta & Łukasz Gruss, 2021. "Analysis of Spatial Distribution of Sediment Pollutants Accumulated in the Vicinity of a Small Hydropower Plant," Energies, MDPI, vol. 14(18), pages 1-20, September.
    9. Liyu Yang & Pan Wu & Wentao Yang, 2022. "Study on Safe Usage of Agricultural Land in Typical Karst Areas Based on Cd in Soil and Maize: A Case Study of Northwestern Guizhou, China," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
    10. Mariusz Sojka & Mariusz Ptak & Joanna Jaskuła & Vlerë Krasniqi, 2022. "Ecological and Health Risk Assessments of Heavy Metals Contained in Sediments of Polish Dam Reservoirs," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    11. Jintao Li & Changjun Jiang & Zhanjun Xing, 2021. "Multi-dimensional influence measurement of urbanization on the quality of natural living environment in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12151-12168, August.
    12. Qing Xia & Jiquan Zhang & Yanan Chen & Qing Ma & Jingyao Peng & Guangzhi Rong & Zhijun Tong & Xingpeng Liu, 2020. "Pollution, Sources and Human Health Risk Assessment of Potentially Toxic Elements in Different Land Use Types under the Background of Industrial Cities," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    13. Ling Yi & Bai Gao & Haiyan Liu & Yanhong Zhang & Chaochao Du & Yanmei Li, 2020. "Characteristics and Assessment of Toxic Metal Contamination in Surface Water and Sediments Near a Uranium Mining Area," IJERPH, MDPI, vol. 17(2), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1248-:d:678897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.