IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6681-d290948.html
   My bibliography  Save this article

Precipitation Forecasting Using Multilayer Neural Network and Support Vector Machine Optimization Based on Flow Regime Algorithm Taking into Account Uncertainties of Soft Computing Models

Author

Listed:
  • Fatemeh Barzegari Banadkooki

    (Agricultural Department, Payam Noor University, Tehran 19395-4697, Iran)

  • Mohammad Ehteram

    (Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan 3513119111, Iran)

  • Ali Najah Ahmed

    (Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Selangor 43000, Malaysia)

  • Chow Ming Fai

    (Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Selangor 43000, Malaysia)

  • Haitham Abdulmohsin Afan

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Wani M. Ridwam

    (Department of Civil Engineering, Universiti Tenaga Nasional, (UNITEN), Selangor 43000, Malaysia)

  • Ahmed Sefelnasr

    (National Water Center, United Arab Emirate University, P.O. Box Al Ain 15551, UAE)

  • Ahmed El-Shafie

    (Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

Drought, climate change, and demand make precipitation forecast a very important issue in water resource management. The present study aims to develop a forecasting model for monthly precipitation in the basin of the province of East Azarbaijan in Iran over a ten-year period using the multilayer perceptron neural network (MLP) and support vector regression (SVR) models. In this study, the flow regime optimization algorithm (FRA) was applied to optimize the multilayer neural network and support vector machine. The flow regime optimization algorithm not only identifies the parameters of the SVR and MLP models but also replaces the training algorithms. The decision tree model (M5T) was also used to forecast precipitation and compare it with the results of hybrid models. Principal component analysis (PCA) was used to identify effective indicators for precipitation forecast. In the first scenario, the input data include temperature data with a delay of one to twelve months, the second scenario includes precipitation data with a delay of one to twelve months, and the third scenario includes precipitation and temperature data with a delay of one to three months. The mean absolute error (MAE) and Nash–Sutcliffe error (NSE) indices were used to evaluate the performance of the models. The results showed that the proposed MLP–FRA outperformed all the other examined models. Regarding the uncertainties of the models, it was also shown that the MLP–FRA model had a lower uncertainty band width than other models, and a higher percentage of the data will fall within the range of the confidence band. As the selected scenario, Scenario 3 had a better performance. Finally, monthly precipitation maps were generated based on the MLP–FRA model and Scenario 3 using the weighted interpolation method, which showed significant precipitation in spring and winter and a low level of precipitation in summer. The results of the present study showed that MLP–FRA has high capability to predict hydrological variables and can be used in future research.

Suggested Citation

  • Fatemeh Barzegari Banadkooki & Mohammad Ehteram & Ali Najah Ahmed & Chow Ming Fai & Haitham Abdulmohsin Afan & Wani M. Ridwam & Ahmed Sefelnasr & Ahmed El-Shafie, 2019. "Precipitation Forecasting Using Multilayer Neural Network and Support Vector Machine Optimization Based on Flow Regime Algorithm Taking into Account Uncertainties of Soft Computing Models," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6681-:d:290948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Ehteram & Hojat Karami & Sayed Farhad Mousavi & Saaed Farzin & Alcigeimes B. Celeste & Ahmad-El Shafie, 2018. "Reservoir Operation by a New Evolutionary Algorithm: Kidney Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4681-4706, November.
    2. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.
    3. Mohammad Ehteram & Vijay P Singh & Ahmad Ferdowsi & Sayed Farhad Mousavi & Saeed Farzin & Hojat Karami & Nuruol Syuhadaa Mohd & Haitham Abdulmohsin Afan & Sai Hin Lai & Ozgur Kisi & M A Malek & Ali Na, 2019. "An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarmad Dashti Latif & Ali Najah Ahmed & Edlic Sathiamurthy & Yuk Feng Huang & Ahmed El-Shafie, 2021. "Evaluation of deep learning algorithm for inflow forecasting: a case study of Durian Tunggal Reservoir, Peninsular Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 351-369, October.
    2. NurIzzah M. Hashim & Norazian Mohamed Noor & Ahmad Zia Ul-Saufie & Andrei Victor Sandu & Petrica Vizureanu & György Deák & Marwan Kheimi, 2022. "Forecasting Daytime Ground-Level Ozone Concentration in Urbanized Areas of Malaysia Using Predictive Models," Sustainability, MDPI, vol. 14(13), pages 1-23, June.
    3. Yan Guo & Wei Tang & Guanghua Hou & Fei Pan & Yubo Wang & Wei Wang, 2021. "Research on Precipitation Forecast Based on LSTM–CP Combined Model," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    4. Mohammad Ehteram & Ali Najah Ahmed & Ming Fai Chow & Sarmad Dashti Latif & Kwok-wing Chau & Kai Lun Chong & Ahmed El-Shafie, 2023. "Optimal operation of hydropower reservoirs under climate change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10627-10659, October.
    5. Muhammad Waseem & Ijaz Ahmad & Ahmad Mujtaba & Muhammad Tayyab & Chen Si & Haishen Lü & Xiaohua Dong, 2020. "Spatiotemporal Dynamics of Precipitation in Southwest Arid-Agriculture Zones of Pakistan," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    6. Abhinav Kumar Singh & Pankaj Kumar & Rawshan Ali & Nadhir Al-Ansari & Dinesh Kumar Vishwakarma & Kuldeep Singh Kushwaha & Kanhu Charan Panda & Atish Sagar & Ehsan Mirzania & Ahmed Elbeltagi & Alban Ku, 2022. "An Integrated Statistical-Machine Learning Approach for Runoff Prediction," Sustainability, MDPI, vol. 14(13), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinping Zhang & Yong Zhao & Weihua Xiao, 2015. "Multi-Resolution Cointegration Prediction for Runoff and Sediment Load," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3601-3613, August.
    2. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    3. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    4. Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
    5. Mahdi Sedighkia & Asghar Abdoli, 2023. "Design of optimal environmental flow regime at downstream of multireservoir systems by a coupled SWAT-reservoir operation optimization method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 834-854, January.
    6. Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Mostafa Dastorani & Mohammad Mirzavand & Mohammad Taghi Dastorani & Seyyed Javad Sadatinejad, 2016. "Comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1811-1827, April.
    8. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    9. Aman Mohammad Kalteh, 2019. "Modular Wavelet–Extreme Learning Machine: a New Approach for Forecasting Daily Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3831-3849, September.
    10. Lamine Diop & Saeed Samadianfard & Ansoumana Bodian & Zaher Mundher Yaseen & Mohammad Ali Ghorbani & Hana Salimi, 2020. "Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 733-746, January.
    11. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    12. Trung Duc Tran & Vinh Ngoc Tran & Jongho Kim, 2021. "Improving the Accuracy of Dam Inflow Predictions Using a Long Short-Term Memory Network Coupled with Wavelet Transform and Predictor Selection," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    13. Mohammad Ehteram & Ali Najah Ahmed & Ming Fai Chow & Sarmad Dashti Latif & Kwok-wing Chau & Kai Lun Chong & Ahmed El-Shafie, 2023. "Optimal operation of hydropower reservoirs under climate change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10627-10659, October.
    14. Kang, Yan & Chen, Peiru & Cheng, Xiao & Zhang, Shuo & Song, Songbai, 2022. "Novel hybrid machine learning framework with decomposition–transformation and identification of key modes for estimating reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Johanna Engström & Peyman Abbaszadeh & David Keellings & Proloy Deb & Hamid Moradkhani, 2022. "Wildfires in the Arctic and tropical biomes: what is the relative role of climate?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1901-1914, November.
    16. Masoud Karbasi, 2018. "Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1035-1052, February.
    17. Zhongzheng He & Chao Wang & Yongqiang Wang & Hairong Zhang & Heng Yin, 2022. "An Efficient Optimization Method for Long-term Power Generation Scheduling of Hydropower Station: Improved Dynamic Programming with a Relaxation Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1481-1497, March.
    18. Ming, Bo & Chen, Jing & Fang, Wei & Liu, Pan & Zhang, Wei & Jiang, Jianhua, 2023. "Evaluation of stochastic optimal operation models for hydro–photovoltaic hybrid generation systems," Energy, Elsevier, vol. 267(C).
    19. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.
    20. Mahrouz Nourali, 2023. "Improved Treatment of Model Prediction Uncertainty: Estimating Rainfall using Discrete Wavelet Transform and Principal Component Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4211-4231, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6681-:d:290948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.