IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p5898-d279627.html
   My bibliography  Save this article

Sequential Disaster Forensics: A Case Study on Direct and Socio-Economic Impacts

Author

Listed:
  • Marina T. Mendoza

    (Helmholtz Centre for Environmental Research (UFZ); Permoser Str. 15, 04318 Leipzig, Germany)

  • Reimund Schwarze

    (Helmholtz Centre for Environmental Research (UFZ); Permoser Str. 15, 04318 Leipzig, Germany
    German Committee for Disaster Reduction (DKKV), Kaiser-Friedrich-Str. 13, 53113 Bonn, Germany)

Abstract

Disaster damages and losses have been increasing in recent decades, highlighting the need to learn from past events. Only a better understanding of the fundamental causes of disasters and their impacts on society can lead to effective prevention and reduction of disaster risk. In this context, disaster forensics focuses on the analysis and interaction of risk factors (i.e., hazard, exposure and vulnerability) and the identification of underlying causes, in order to tackle them through dedicated action. In this work, we explore the results of disaster forensics through a case study of subsequent floods in 2002 and 2013 in the city of Grimma, Saxony, in Germany. Risk factors are investigated to identify their contribution in increasing or reducing disaster damage, in conjunction with socio-economic impacts in the mostly affected inner city of Grimma. In particular, we analyze (i) what data is needed to conduct a disaster forensic analysis and (ii) how much the sequential application of disaster forensics contributes to a better understanding of risk and the identification of the causes of disasters impacts. The analysis shows that the sequential approach for disaster forensics is key for understanding cause–effect relationships regarding socio-economic impacts.

Suggested Citation

  • Marina T. Mendoza & Reimund Schwarze, 2019. "Sequential Disaster Forensics: A Case Study on Direct and Socio-Economic Impacts," Sustainability, MDPI, vol. 11(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5898-:d:279627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/5898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/5898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominik Paprotny & Antonia Sebastian & Oswaldo Morales-Nápoles & Sebastiaan N. Jonkman, 2018. "Trends in flood losses in Europe over the past 150 years," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Siedschlag, Daniela, 2010. "Hochwasser & Eigenvorsorge: Untersuchung von Einflussfaktoren persönlicher Schutzmaßnahmen," UFZ Reports 03/2010, Helmholtz Centre for Environmental Research (UFZ).
    3. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomáš Hanák & Martin Tuscher & Oto Přibyl, 2020. "Hybrid Genetic Algorithm-Based Approach for Estimating Flood Losses on Structures of Buildings," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    2. Tadashi Nakasu, 2025. "Disasters of global interdependences: lessons learned from the worst typhoon disaster in Japan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 10139-10158, May.
    3. Scira Menoni, 2025. "Urban Planning for Disaster Risk Reduction and Climate Change Adaptation: A Review at the Crossroads of Research and Practice," Sustainability, MDPI, vol. 17(20), pages 1-35, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    2. Haibo Hu & Miao Yu & Xiya Zhang & Ying Wang, 2024. "Performance benchmarking on several regression models applied in urban flash flood risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3487-3504, March.
    3. Octavio Rojas & María Mardones & Carolina Martínez & Luis Flores & Katia Sáez & Alberto Araneda, 2018. "Flooding in Central Chile: Implications of Tides and Sea Level Increase in the 21st Century," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    4. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    5. Thomas Thaler, 2021. "Just retreat—how different countries deal with it: examples from Austria and England," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 412-419, September.
    6. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
    7. Cailin Li & Yue Wang & Baoyun Guo & Yihui Lu & Na Sun, 2024. "Street Community-Level Urban Flood Risk Assessment Based on Numerical Simulation," Sustainability, MDPI, vol. 16(16), pages 1-32, August.
    8. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    9. Convertino, Matteo & Annis, Antonio & Nardi, Fernando, 2019. "Information-theoretic Portfolio Decision Model for Optimal Flood Management," Earth Arxiv k5aut, Center for Open Science.
    10. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    11. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    12. Rui Liu & Yun Chen & Jianping Wu & Lei Gao & Damian Barrett & Tingbao Xu & Xiaojuan Li & Linyi Li & Chang Huang & Jia Yu, 2017. "Integrating Entropy‐Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 756-773, April.
    13. Honghao Liu & ZhuoWei Hu & Ziqing Yang & Mi Wang, 2024. "Model-data matching method for natural disaster emergency service scenarios: implementation based on a knowledge graph and community discovery algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(5), pages 4233-4255, March.
    14. Kalfin & Sukono & Sudradjat Supian & Mustafa Mamat, 2022. "Insurance as an Alternative for Sustainable Economic Recovery after Natural Disasters: A Systematic Literature Review," Sustainability, MDPI, vol. 14(7), pages 1-18, April.
    15. Cailin Li & Na Sun & Yihui Lu & Baoyun Guo & Yue Wang & Xiaokai Sun & Yukai Yao, 2022. "Review on Urban Flood Risk Assessment," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    16. Michalis Diakakis & Katerina Papagiannaki, 2021. "Characteristics of Indoor Flood Fatalities: Evidence from Greece," Sustainability, MDPI, vol. 13(15), pages 1-15, August.
    17. Kerim Koc & Zeynep Işık, 2020. "A multi-agent-based model for sustainable governance of urban flood risk mitigation measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1079-1110, October.
    18. Ioannis Kougkoulos & Myriam Merad & Simon J. Cook & Ioannis Andredakis, 2021. "Floods in Provence-Alpes-Côte d'Azur and lessons for French flood risk governance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1959-1980, November.
    19. Chang-Yu Hong & Eun-Sung Chung, 2016. "Temporal Variations of Citizens’ Demands on Flood Damage Mitigation, Streamflow Quantity and Quality in the Korean Urban Watershed," Sustainability, MDPI, vol. 8(4), pages 1-19, April.
    20. Igor Leščešen & Mojca Šraj & Biljana Basarin & Dragoslav Pavić & Minučer Mesaroš & Manfred Mudelsee, 2022. "Regional Flood Frequency Analysis of the Sava River in South-Eastern Europe," Sustainability, MDPI, vol. 14(15), pages 1-19, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5898-:d:279627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.