IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4710-d189535.html
   My bibliography  Save this article

A GIS-Based Framework Creating Green Stormwater Infrastructure Inventory Relevant to Surface Transportation Planning

Author

Listed:
  • Xiaofan Xu

    (Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, ENB 118, Tampa, FL 33620, USA)

  • Dylan S. P. Schreiber

    (Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, ENB 118, Tampa, FL 33620, USA)

  • Qing Lu

    (Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, ENB 118, Tampa, FL 33620, USA)

  • Qiong Zhang

    (Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, ENB 118, Tampa, FL 33620, USA)

Abstract

The stormwater runoff that carries pollutants from the land adjacent to road transportation systems may impair the water environment and threaten the ecosystem and human health. A proper management approach like green stormwater infrastructure (GSI) can help control flooding and the runoff pollutants. One barrier for GSI analysis relevant to system-level surface transportation planning is the lack of the inventory of GSI in many U.S. cities. This study aims to develop a GIS-based framework for creating GSI inventory in a time and labor efficient way, different from the traditional survey-based method. The new proposed framework consists of three steps, including road categorization, GSI mapping, and GSI type identification using the GIS data, high-resolution land-cover image, and Google Earth street view pictures. The new approach was tested in Philadelphia, Pennsylvania and also applied in Tampa, Florida. The results showed that the new GIS-based framework can achieve similar accuracy to the survey-based method while saving time and labor. The GSI inventory created in the study demonstrated the usefulness of the proposed framework for analyzing the status of GSI implementation and identifying gaps for future planning in terms of potential locations and underrepresented GSI types.

Suggested Citation

  • Xiaofan Xu & Dylan S. P. Schreiber & Qing Lu & Qiong Zhang, 2018. "A GIS-Based Framework Creating Green Stormwater Infrastructure Inventory Relevant to Surface Transportation Planning," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4710-:d:189535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthew Dennis & David Barlow & Gina Cavan & Penny A. Cook & Anna Gilchrist & John Handley & Philip James & Jessica Thompson & Konstantinos Tzoulas & C. Philip Wheater & Sarah Lindley, 2018. "Mapping Urban Green Infrastructure: A Novel Landscape-Based Approach to Incorporating Land Use and Land Cover in the Mapping of Human-Dominated Systems," Land, MDPI, vol. 7(1), pages 1-25, January.
    2. Liu, Wen & Chen, Weiping & Peng, Chi, 2014. "Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study," Ecological Modelling, Elsevier, vol. 291(C), pages 6-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Bottero & Elena Comino & Federico Dell’Anna & Laura Dominici & Maurizio Rosso, 2019. "Strategic Assessment and Economic Evaluation: The Case Study of Yanzhou Island (China)," Sustainability, MDPI, vol. 11(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Seidl & Manal Saifane, 2021. "A green intensity index to better assess the multiple functions of urban vegetation with an application to Paris metropolitan area," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15204-15224, October.
    2. Hyomin Kim & Dong-Kun Lee & Sunyong Sung, 2016. "Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability," Sustainability, MDPI, vol. 8(2), pages 1-17, January.
    3. Vanessa G. Macintyre & Sarah Cotterill & Jamie Anderson & Chris Phillipson & Jack S. Benton & David P. French, 2019. "“I Would Never Come Here Because I’ve Got My Own Garden”: Older Adults’ Perceptions of Small Urban Green Spaces," IJERPH, MDPI, vol. 16(11), pages 1-18, June.
    4. Antonios Kolimenakis & Alexandra D. Solomou & Nikolaos Proutsos & Evangelia V. Avramidou & Evangelia Korakaki & Georgios Karetsos & Georgios Maroulis & Eleftherios Papagiannis & Konstantinia Tsagkari, 2021. "The Socioeconomic Welfare of Urban Green Areas and Parks; A Literature Review of Available Evidence," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    5. Byungsun Yang & Dong Kun Lee, 2021. "Planning Strategy for the Reduction of Runoff Using Urban Green Space," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    6. Andrea I. Frank & Andrew Flynn & Nick Hacking & Christopher Silver, 2021. "More Than Open Space! The Case for Green Infrastructure Teaching in Planning Curricula," Urban Planning, Cogitatio Press, vol. 6(1), pages 63-74.
    7. Johnson, Daniel & Geisendorf, Sylvie, 2019. "Are Neighborhood-level SUDS Worth it? An Assessment of the Economic Value of Sustainable Urban Drainage System Scenarios Using Cost-Benefit Analyses," Ecological Economics, Elsevier, vol. 158(C), pages 194-205.
    8. Tanja Fluhrer & Fernando Chapa & Jochen Hack, 2021. "A Methodology for Assessing the Implementation Potential for Retrofitted and Multifunctional Urban Green Infrastructure in Public Areas of the Global South," Sustainability, MDPI, vol. 13(1), pages 1-25, January.
    9. Erica Honeck & Atte Moilanen & Benjamin Guinaudeau & Nicolas Wyler & Martin A. Schlaepfer & Pascal Martin & Arthur Sanguet & Loreto Urbina & Bertrand von Arx & Joëlle Massy & Claude Fischer & Anthony , 2020. "Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    10. Karteris, Marinos & Theodoridou, Ifigeneia & Mallinis, Giorgos & Tsiros, Emmanouel & Karteris, Apostolos, 2016. "Towards a green sustainable strategy for Mediterranean cities: Assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 510-525.
    11. Jake M. Robinson & Anna Jorgensen & Ross Cameron & Paul Brindley, 2020. "Let Nature Be Thy Medicine: A Socioecological Exploration of Green Prescribing in the UK," IJERPH, MDPI, vol. 17(10), pages 1-24, May.
    12. Abdul Naser Majidi & Zoran Vojinovic & Alida Alves & Sutat Weesakul & Arlex Sanchez & Floris Boogaard & Jeroen Kluck, 2019. "Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    13. Shruti Lahoti & Mohamed Kefi & Ashish Lahoti & Osamu Saito, 2019. "Mapping Methodology of Public Urban Green Spaces Using GIS: An Example of Nagpur City, India," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    14. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Maria Ignatieva & Fahimeh Mofrad, 2023. "Understanding Urban Green Spaces Typology’s Contribution to Comprehensive Green Infrastructure Planning: A Study of Canberra, the National Capital of Australia," Land, MDPI, vol. 12(5), pages 1-27, April.
    16. Tii N. Nchofoung & Simplice A. Asongu & Arsène A. Njamen Kengdo & Elvis D. Achuo, 2022. "Linear and non‐linear effects of infrastructures on inclusive human development in Africa," African Development Review, African Development Bank, vol. 34(1), pages 81-96, March.
    17. Barah, Masoud & Khojandi, Anahita & Li, Xueping & Hathaway, Jon & Omitaomu, OluFemi, 2021. "Optimizing green infrastructure placement under precipitation uncertainty," Omega, Elsevier, vol. 100(C).
    18. Mao, Xuhui & Jia, Haifeng & Yu, Shaw L., 2017. "Assessing the ecological benefits of aggregate LID-BMPs through modelling," Ecological Modelling, Elsevier, vol. 353(C), pages 139-149.
    19. Kichan Kim & Chang Kil Lee & Hyun Woo Kim, 2022. "Understanding the Accessibility of Urban Parks and Connectivity of Green Spaces in Single-Person Household Distribution: Case Study of Incheon, South Korea," Land, MDPI, vol. 11(9), pages 1-17, August.
    20. Joanna Dobrzańska & Adam Nadolny & Robert Kalbarczyk & Monika Ziemiańska, 2022. "Urban Resilience and Residential Greenery—The Evidence from Poland," Sustainability, MDPI, vol. 14(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4710-:d:189535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.