IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4648-d188552.html
   My bibliography  Save this article

Optimized Planning of Different Crops in a Field Using Optimal Control in Portugal

Author

Listed:
  • Rui M. S. Pereira

    (Department of Mathematics and Center of Physics, University of Minho, 4710-057 Braga, Portugal)

  • Sofia Lopes

    (Department of Mathematics and Center of Physics, University of Minho, 4710-057 Braga, Portugal
    SYSTEC—Research Center for Systems and Technologies, University of Porto, 4200-465 Porto, Portugal)

  • Amélia Caldeira

    (SYSTEC—Research Center for Systems and Technologies, University of Porto, 4200-465 Porto, Portugal
    LEMA-ISEP, Instituto Politécnico do Porto, 4200-072 Porto, Portugal)

  • Victor Fonte

    (Department of Informatics, University of Minho, 4710-057 Braga, Portugal
    UNU-EGOV, R. Vila Flor 166, 4810-225 Guimarães, Portugal
    INESC TEC, R. Dr. Roberto Frias, 4200-465 Porto, Portugal)

Abstract

Climate change is a proven fact. In the report of 2007 from IPCC, one can read that global warming is an issue to be dealt with urgently. In many parts of the world, the estimated rise of temperature (in a very near future) is significant. One of the most affected regions is the Iberian Peninsula, where the increasing need for water will very soon be a problem. Therefore, it is necessary that decision makers are able to decide on all issues related to water management. In this paper, we show a couple of mathematical models that can aid the decision making in the management of an agricultural field at a given location. Having a field, in which different crops can be produced, the solution of the first model indicates the area that should be used for each crop so that the profit is as large as possible, while the water spent is the smallest possible guaranteeing the water requirements of each crop. Using known data for these crops in Portugal, including costs of labour, machines, energy and water, as well as the estimated value of the products obtained, the first mathematical model developed, via optimal control theory, obtains the best management solution. It allows creating different scenarios, thus it can be a valuable tool to help the farmer/decision maker decide the crop and its area to be cultivated. A second mathematical model was developed. It improves the first one, in the sense that it allows considering that water from the rainfall can be collected in a reservoir with a given capacity. The contribution of the collected water from the rainfall in the profit obtained for some different scenarios is also shown.

Suggested Citation

  • Rui M. S. Pereira & Sofia Lopes & Amélia Caldeira & Victor Fonte, 2018. "Optimized Planning of Different Crops in a Field Using Optimal Control in Portugal," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4648-:d:188552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Dutta & B.C. Sahoo & Rajashree Mishra & S. Acharya, 2016. "Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops Pattern and Water Balance in a Farm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4097-4123, September.
    2. Kuo, Sheng-Feng & Merkley, Gary P. & Liu, Chen-Wuing, 2000. "Decision support for irrigation project planning using a genetic algorithm," Agricultural Water Management, Elsevier, vol. 45(3), pages 243-266, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    2. R. Rai & S. Sarkar & V. Singh, 2009. "Evaluation of the Adequacy of Statistical Distribution Functions for Deriving Unit Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 899-929, March.
    3. C. Sivapragasam & G. Vasudevan & P. Vincent, 2007. "Effect of inflow forecast accuracy and operating time horizon in optimizing irrigation releases," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(6), pages 933-945, June.
    4. Parolo, Gilberto & Ferrarini, Alessandro & Rossi, Graziano, 2009. "Optimization of tourism impacts within protected areas by means of genetic algorithms," Ecological Modelling, Elsevier, vol. 220(8), pages 1138-1147.
    5. Ojeda-Bustamante, Waldo & Gonzalez-Camacho, Juan Manuel & Sifuentes-Ibarra, Ernesto & Isidro, Esteban & Rendon-Pimentel, Luis, 2007. "Using spatial information systems to improve water management in Mexico," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 81-88, April.
    6. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    7. Hassan-Esfahani, Leila & Torres-Rua, Alfonso & McKee, Mac, 2015. "Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines, and remotely sensed data," Agricultural Water Management, Elsevier, vol. 153(C), pages 42-50.
    8. Hamideh Noory & Mona Deyhool & Farhad Mirzaei, 2019. "A Simulation-Optimization Model for Conjunctive Use of Canal and Pond in Irrigating Paddy Fields," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1053-1068, February.
    9. S. Dutta & B.C. Sahoo & Rajashree Mishra & S. Acharya, 2016. "Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops Pattern and Water Balance in a Farm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4097-4123, September.
    10. Dariane, A.B. & Ghasemi, M. & Karami, F. & Azaranfar, A. & Hatami, S., 2021. "Crop pattern optimization in a multi-reservoir system by combining many-objective and social choice methods," Agricultural Water Management, Elsevier, vol. 257(C).
    11. A. Vasan & Komaragiri Raju, 2007. "Application of Differential Evolution for Irrigation Planning: An Indian Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1393-1407, August.
    12. Mateos, Luciano & Lopez-Cortijo, Ignacio & Sagardoy, Juan A., 2002. "SIMIS: the FAO decision support system for irrigation scheme management," Agricultural Water Management, Elsevier, vol. 56(3), pages 193-206, August.
    13. Shanshan Guo & Fan Zhang & Chenglong Zhang & Chunjiang An & Sufen Wang & Ping Guo, 2018. "A Multi-Objective Hierarchical Model for Irrigation Scheduling in the Complex Canal System," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    14. K. Srinivasa Raju & D. Nagesh Kumar, 2004. "Irrigation Planning using Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 163-176, April.
    15. A. Garudkar & A. Rastogi & T. Eldho & S. Gorantiwar, 2011. "Optimal Reservoir Release Policy Considering Heterogeneity of Command Area by Elitist Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3863-3881, November.
    16. X. T. Zeng & Y. P. Li & G. H. Huang & J. Liu, 2017. "Modeling of Water Resources Allocation and Water Quality Management for Supporting Regional Sustainability under Uncertainty in an Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3699-3721, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4648-:d:188552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.