IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p3878-d178212.html
   My bibliography  Save this article

Experimental Investigation on Establishing the HCCI Process Fueled by N-Heptane in a Direct Injection Diesel Engine at Different Compression Ratios

Author

Listed:
  • Tuan Le Anh

    (School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam)

  • Vinh Nguyen Duy

    (School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam)

  • Ha Khuong Thi

    (Faculty of Mechanical Engineering, University of Transport and Communications, Hanoi 100000, Vietnam)

  • Hoi Nguyen Xa

    (University of Fire Fighting and Prevention, Hanoi 100000, Vietnam)

Abstract

Establishing the homogeneous charge compression ignition (HCCI) process in a diesel engine, in order to improve exhaust emission quality while extending the HCCI regime, is one of the challenges in applying HCCI in worldwide applications. This can be done by decreasing the compression ratio, and controlling the exhaust gas recirculation (EGR) rate and charging temperature. In this paper, an original single cylinder diesel engine was converted to n-heptane-fueled HCCI with the fuel injected into the intake manifold. At the designed compression ratio of 20:1, the HCCI engine could operate stably at low speed (from 1600 rpm to 2000 rpm) and low load (10% to 20% load). In addition, reducing the compression ratio from 20:1 to 14.87:1 by changing the thickness of the cylinder head gasket and with no EGR applied extended the operating range to 50% load and 3200 rpm speed.

Suggested Citation

  • Tuan Le Anh & Vinh Nguyen Duy & Ha Khuong Thi & Hoi Nguyen Xa, 2018. "Experimental Investigation on Establishing the HCCI Process Fueled by N-Heptane in a Direct Injection Diesel Engine at Different Compression Ratios," Sustainability, MDPI, vol. 10(11), pages 1-11, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3878-:d:178212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/3878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/3878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Cong Ge & Min Soo Kim & Sam Ki Yoon & Nag Jung Choi, 2015. "Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend," Energies, MDPI, vol. 8(7), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaojie Shen & Wenzheng Cui & Xiaodong Ju & Zhongchang Liu & Shaohua Wu & Jianguo Yang, 2018. "Numerical Investigation on Effects of Assigned EGR Stratification on a Heavy Duty Diesel Engine with Two-Stage Fuel Injection," Energies, MDPI, vol. 11(3), pages 1-14, February.
    2. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    3. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Mohammad Salman & Sung Chul Kim, 2019. "Effect of Cylinder Air Pressure and Hot Surface Temperature on Ignition Delay of Diesel Spray in a Constant Volume Combustion Chamber," Energies, MDPI, vol. 12(13), pages 1-12, July.
    5. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Hanzhengnan Yu & Xingyu Liang & Gequn Shu & Xu Wang & Yuesen Wang & Hongsheng Zhang, 2016. "Experimental Investigation on Wall Film Distribution of Dimethyl Ether/Diesel Blended Fuels Formed during Spray Wall Impingement," Energies, MDPI, vol. 9(11), pages 1-17, November.
    7. Yuxi Miao & Zhengxing Zuo & Huihua Feng & Chendong Guo & Yu Song & Boru Jia & Yuyao Guo, 2016. "Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process," Energies, MDPI, vol. 9(8), pages 1-19, August.
    8. Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
    9. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    10. Abdolsaeid Ganjehkaviri & Mohammad Nazri Mohd Jaafar & Seyed Ehsan Hosseini & Anas Basri Musthafa, 2016. "Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner," Energies, MDPI, vol. 9(2), pages 1-10, February.
    11. Oleksandr Cherednichenko & Valerii Havrysh & Vyacheslav Shebanin & Antonina Kalinichenko & Grzegorz Mentel & Joanna Nakonieczny, 2020. "Local Green Power Supply Plants Based on Alcohol Regenerative Gas Turbines: Economic and Environmental Aspects," Energies, MDPI, vol. 13(9), pages 1-20, May.
    12. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan & Justin Hyde, 2016. "Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines," Energies, MDPI, vol. 9(6), pages 1-15, May.
    13. Arkadiusz Jamrozik & Wojciech Tutak & Renata Gnatowska & Ɓukasz Nowak, 2019. "Comparative Analysis of the Combustion Stability of Diesel-Methanol and Diesel-Ethanol in a Dual Fuel Engine," Energies, MDPI, vol. 12(6), pages 1-17, March.
    14. Salman Abdu Ahmed & Song Zhou & Yuanqing Zhu & Asfaw Solomon Tsegay & Yoming Feng & Naseem Ahmad & Adil Malik, 2020. "Effects of Pig Manure and Corn Straw Generated Biogas and Methane Enriched Biogas on Performance and Emission Characteristics of Dual Fuel Diesel Engines," Energies, MDPI, vol. 13(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3878-:d:178212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.