IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i2p35-d1651299.html
   My bibliography  Save this article

Reliability Assessment via Combining Data from Similar Systems

Author

Listed:
  • Jianping Hao

    (Shijiazhuang Campus, Army Engineering University of PLA, Shijiazhuang 050003, China)

  • Mochao Pei

    (Shijiazhuang Campus, Army Engineering University of PLA, Shijiazhuang 050003, China)

Abstract

In operational testing contexts, testers face dual challenges of constrained timeframes and limited resources, both of which impede the generation of reliability test data. To address this issue, integrating data from similar systems with test data can effectively expand data sources. This study proposes a systematic approach wherein the mission of the system under test (SUT) is decomposed to identify candidate subsystems for data combination. A phylogenetic tree representation is constructed for subsystem analysis and subsequently mapped to a mixed-integer programming (MIP) model, enabling efficient computation of similarity factors. A reliability assessment model that combines data from similar subsystems is established. The similarity factor is regarded as a covariate, and the regression relationship between it and the subsystem failure-time distribution is established. The joint posterior distribution of regression coefficients is derived using Bayesian theory, which are then sampled via the No-U-Turn Sampler (NUTS) algorithm to obtain reliability estimates. Numerical case studies demonstrate that the proposed method outperforms existing approaches, yielding more robust similarity factors and higher accuracy in reliability assessments.

Suggested Citation

  • Jianping Hao & Mochao Pei, 2025. "Reliability Assessment via Combining Data from Similar Systems," Stats, MDPI, vol. 8(2), pages 1-25, May.
  • Handle: RePEc:gam:jstats:v:8:y:2025:i:2:p:35-:d:1651299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/8/2/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/8/2/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patil, Anand & Huard, David & Fonnesbeck, Christopher J., 2010. "PyMC: Bayesian Stochastic Modelling in Python," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i04).
    2. Per Ahlgren & Bo Jarneving & Ronald Rousseau, 2003. "Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(6), pages 550-560, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruzzone, Octavio A. & Logarzo, Guillermo A. & Aguirre, María B. & Virla, Eduardo G., 2018. "Intra-host interspecific larval parasitoid competition solved using modelling and bayesian statistics," Ecological Modelling, Elsevier, vol. 385(C), pages 114-123.
    2. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    3. Xian Li & Ronald Rousseau & Liming Liang & Fangjie Xi & Yushuang Lü & Yifan Yuan & Xiaojun Hu, 2022. "Is low interdisciplinarity of references an unexpected characteristic of Nobel Prize winning research?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2105-2122, April.
    4. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    5. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    7. Raphaël Maucuer & Alexandre Renaud & Sébastien Ronteau & Laurent Muzellec, 2022. "What can we learn from marketers? A bibliometric analysis of the marketing literature on business model research," Post-Print hal-03718522, HAL.
    8. Jesper W. Schneider & Birger Larsen & Peter Ingwersen, 2009. "A comparative study of first and all-author co-citation counting, and two different matrix generation approaches applied for author co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 103-130, July.
    9. Wilfred Dolfsma & Loet Leydesdorff, 2010. "The citation field of evolutionary economics," Journal of Evolutionary Economics, Springer, vol. 20(5), pages 645-664, October.
    10. Persson, Olle, 2010. "Identifying research themes with weighted direct citation links," Journal of Informetrics, Elsevier, vol. 4(3), pages 415-422.
    11. Perianes-Rodriguez, Antonio & Waltman, Ludo & van Eck, Nees Jan, 2016. "Constructing bibliometric networks: A comparison between full and fractional counting," Journal of Informetrics, Elsevier, vol. 10(4), pages 1178-1195.
    12. Siyan Zeng & Jing Ma & Yanhua Ren & Gang-Jun Liu & Qi Zhang & Fu Chen, 2019. "Assessing the Spatial Distribution of Soil PAHs and their Relationship with Anthropogenic Activities at a National Scale," IJERPH, MDPI, vol. 16(24), pages 1-22, December.
    13. Peter Sjögårde & Per Ahlgren, 2024. "Normalization of direct citations for clustering in publication-level networks: evaluation of six approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(3), pages 1949-1968, March.
    14. Yuchen Pan & Shuai Ding & Wenjuan Fan & Jing Li & Shanlin Yang, 2015. "Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    15. Milojević, Staša & Sugimoto, Cassidy R. & Larivière, Vincent & Thelwall, Mike & Ding, Ying, 2014. "The role of handbooks in knowledge creation and diffusion: A case of science and technology studies," Journal of Informetrics, Elsevier, vol. 8(3), pages 693-709.
    16. Zhao, Dangzhi & Strotmann, Andreas, 2008. "Comparing all-author and first-author co-citation analyses of information science," Journal of Informetrics, Elsevier, vol. 2(3), pages 229-239.
    17. Kunz, Werner H. & Hogreve, Jens, 2011. "Toward a deeper understanding of service marketing: The past, the present, and the future," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 231-247.
    18. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    19. Florian Noseleit, 2013. "Entrepreneurship, structural change, and economic growth," Journal of Evolutionary Economics, Springer, vol. 23(4), pages 735-766, September.
    20. Wolfram, Dietmar & Zhao, Yuehua, 2014. "A comparison of journal similarity across six disciplines using citing discipline analysis," Journal of Informetrics, Elsevier, vol. 8(4), pages 840-853.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:2:p:35-:d:1651299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.