IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i2p27-d1637989.html
   My bibliography  Save this article

Detailed Command vs. Mission Command: A Cancer-Stage Model of Institutional Decision-Making

Author

Listed:
  • Rodrick Wallace

    (The New York State Psychiatric Institute, New York, NY 10032, USA
    Current address: NYSPI, Box 47, 1051 Riverside Dr., New York, NY 10032, USA.)

Abstract

Those accustomed to acting within ‘normal’ bureaucracies will have experienced the degradation, distortion, and stunting imposed by inordinate levels of hierarchical ‘decision structure’, particularly under the critical time constraints so fondly exploited by John Boyd and his followers. Here, via an approach based on the asymptotic limit theorems of information and control theories, we explore this dynamic in detail, abducting ideas from the theory of carcinogenesis. The resulting probability models can, with some effort, be converted into new statistical tools for analysis of real time, real world data involving cognitive phenomena and their dysfunctions across a considerable range of scales and levels of organization.

Suggested Citation

  • Rodrick Wallace, 2025. "Detailed Command vs. Mission Command: A Cancer-Stage Model of Institutional Decision-Making," Stats, MDPI, vol. 8(2), pages 1-25, April.
  • Handle: RePEc:gam:jstats:v:8:y:2025:i:2:p:27-:d:1637989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/8/2/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/8/2/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanqing Jin & Zuo Quan Xu & Xun Yu Zhou, 2008. "A Convex Stochastic Optimization Problem Arising From Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 171-183, January.
    2. Stephen M. Robinson, 1993. "Shadow Prices for Measures of Effectiveness, II: General Model," Operations Research, INFORMS, vol. 41(3), pages 536-548, June.
    3. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    4. Stephen M. Robinson, 1993. "Shadow Prices for Measures of Effectiveness, I: Linear Model," Operations Research, INFORMS, vol. 41(3), pages 518-535, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhishek Singh & Debdas Ghosh & Qamrul Hasan Ansari, 2024. "Inexact Newton Method for Solving Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1333-1363, June.
    2. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    3. Rodrick Wallace, 2024. "“Neuroscience†models of institutional conflict under fog, friction, and adversarial intent," The Journal of Defense Modeling and Simulation, , vol. 21(1), pages 75-86, January.
    4. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    5. Jianzhong Zhang & Biao Qu & Naihua Xiu, 2010. "Some projection-like methods for the generalized Nash equilibria," Computational Optimization and Applications, Springer, vol. 45(1), pages 89-109, January.
    6. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    7. Lowell Bruce Anderson & Frederic A. Miercort, 1995. "On weapons scores and force strengths," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(3), pages 375-395, April.
    8. Masao Fukushima, 2011. "Restricted generalized Nash equilibria and controlled penalty algorithm," Computational Management Science, Springer, vol. 8(3), pages 201-218, August.
    9. Koichi Nabetani & Paul Tseng & Masao Fukushima, 2011. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints," Computational Optimization and Applications, Springer, vol. 48(3), pages 423-452, April.
    10. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    11. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    12. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    13. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    14. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    15. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    16. Pawanesh Pawanesh & Charu Sharma & Niteesh Sahni, 2025. "Analyzing Communicability and Connectivity in the Indian Stock Market During Crises," Papers 2502.08242, arXiv.org.
    17. Guohui Guan & Zongxia Liang & Yi xia, 2021. "Optimal management of DC pension fund under relative performance ratio and VaR constraint," Papers 2103.04352, arXiv.org.
    18. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    19. Gregory Gutin & Tomohiro Hirano & Sung-Ha Hwang & Philip R. Neary & Alexis Akira Toda, 2021. "The effect of social distancing on the reach of an epidemic in social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 629-647, July.
    20. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:2:p:27-:d:1637989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.