IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v6y2023i4p75-1225d1273145.html
   My bibliography  Save this article

Pivot Clustering to Minimize Error in Forecasting Aggregated Demand Streams Each Following an Autoregressive Moving Average Model

Author

Listed:
  • Vladimir Kovtun

    (Sy Syms School of Business, Yeshiva University, Suite 334, 215 Lexington Avenue, New York, NY 10012, USA)

  • Avi Giloni

    (Sy Syms School of Business, Yeshiva University, BH-428, 500 West 185th St., New York, NY 10033, USA)

  • Clifford Hurvich

    (Technology, Operations and Statistics, Leonard N. Stern School of Business, New York University, 44 West 4th St., New York, NY 10012, USA)

  • Sridhar Seshadri

    (Gies College of Business and Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 601 E John Street, Champaign, IL 61820, USA)

Abstract

In this paper, we compare the effects of forecasting demand using individual (disaggregated) components versus first aggregating the components either fully or into several clusters. Demand streams are assumed to follow autoregressive moving average (ARMA) processes. Using individual demand streams will always lead to a superior forecast compared to any aggregates; however, we show that if several aggregated clusters are formed in a structured manner, then these subaggregated clusters will lead to a forecast with minimal increase in mean-squared forecast error. We show this result based on theoretical MSFE obtained directly from the models generating the clusters as well as estimated MSFE obtained directly from simulated demand observations. We suggest a pivot algorithm, which we call Pivot Clustering, to create these clusters. We also provide theoretical results to investigate sub-aggregation, including for special cases, such as aggregating demand generated by MA(1) models and aggregating demand generated by ARMA models with similar or the same parameters.

Suggested Citation

  • Vladimir Kovtun & Avi Giloni & Clifford Hurvich & Sridhar Seshadri, 2023. "Pivot Clustering to Minimize Error in Forecasting Aggregated Demand Streams Each Following an Autoregressive Moving Average Model," Stats, MDPI, vol. 6(4), pages 1-28, November.
  • Handle: RePEc:gam:jstats:v:6:y:2023:i:4:p:75-1225:d:1273145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/6/4/75/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/6/4/75/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kohn, Robert, 1982. "When is an aggregate of a time series efficiently forecast by its past?," Journal of Econometrics, Elsevier, vol. 18(3), pages 337-349, April.
    2. Kovtun, Vladimir & Giloni, Avi & Hurvich, Clifford, 2019. "The value of sharing disaggregated information in supply chains," European Journal of Operational Research, Elsevier, vol. 277(2), pages 469-478.
    3. Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
    4. Saif Benjaafar & Mohsen ElHafsi & Francis de Véricourt, 2004. "Demand Allocation in Multiple-Product, Multiple-Facility, Make-to-Stock Systems," Management Science, INFORMS, vol. 50(10), pages 1431-1448, October.
    5. Avi Giloni & Clifford Hurvich & Sridhar Seshadri, 2014. "Forecasting and information sharing in supply chains under ARMA demand," IISE Transactions, Taylor & Francis Journals, vol. 46(1), pages 35-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kovtun, Vladimir & Giloni, Avi & Hurvich, Clifford, 2019. "The value of sharing disaggregated information in supply chains," European Journal of Operational Research, Elsevier, vol. 277(2), pages 469-478.
    2. Lu, Jizhou & Feng, Gengzhong & Shum, Stephen & Lai, Kin Keung, 2021. "On the value of information sharing in the presence of information errors," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1139-1152.
    3. Brüggemann, Ralf & Lütkepohl, Helmut, 2013. "Forecasting contemporaneous aggregates with stochastic aggregation weights," International Journal of Forecasting, Elsevier, vol. 29(1), pages 60-68.
    4. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    5. Reinhard Ellwanger, Stephen Snudden, 2021. "Predictability of Aggregated Time Series," LCERPA Working Papers bm0127, Laurier Centre for Economic Research and Policy Analysis.
    6. He Jiang, 2022. "A novel robust structural quadratic forecasting model and applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1156-1180, September.
    7. Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941.
    8. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    9. Daniel Kosiorowski & Dominik Mielczarek & Jerzy. P. Rydlewski, 2017. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for Day and Night Air Pollution in Silesia Region: A Critical Overview," Papers 1712.03797, arXiv.org.
    10. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
    11. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    12. Ketzenberg, Michael & Oliva, Rogelio & Wang, Yimin & Webster, Scott, 2023. "Retailer inventory data sharing in a fresh product supply chain," European Journal of Operational Research, Elsevier, vol. 307(2), pages 680-693.
    13. Vladimir Kovtun & Avi Giloni & Clifford Hurvich, 2014. "Assessing the value of demand sharing in supply chains," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(7), pages 515-531, October.
    14. Ali, Agha Iqbal & O'Connor, Debra J., 2010. "The impact of distribution system characteristics on computational tractability," European Journal of Operational Research, Elsevier, vol. 200(2), pages 323-333, January.
    15. Verstraete, Gylian & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "A data-driven framework for predicting weather impact on high-volume low-margin retail products," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 169-177.
    16. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    17. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
    18. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
    19. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
    20. Angela Capolongo & Claudia Pacella, 2021. "Forecasting inflation in the euro area: countries matter!," Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:6:y:2023:i:4:p:75-1225:d:1273145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.