IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v13y2025i6p117-d1681464.html
   My bibliography  Save this article

Non-Uniqueness of Best-Of Option Prices Under Basket Calibration

Author

Listed:
  • Mohammed Ahnouch

    (C3S, Faculté des Sciences et Techniques de Tanger, University Abdelmalek Essaadi, Tangier 90000, Morocco
    PRISM Sorbonne, Université Paris 1 Panthéon-Sorbonne, 17 rue de la Sorbonne, 75005 Paris, France)

  • Lotfi Elaachak

    (C3S, Faculté des Sciences et Techniques de Tanger, University Abdelmalek Essaadi, Tangier 90000, Morocco)

  • Abderrahim Ghadi

    (C3S, Faculté des Sciences et Techniques de Tanger, University Abdelmalek Essaadi, Tangier 90000, Morocco)

Abstract

This paper demonstrates that perfectly calibrating a multi-asset model to observed market prices of all basket call options is insufficient to uniquely determine the price of a best-of call option. Previous research on multi-asset option pricing has primarily focused on complete market settings or assumed specific parametric models, leaving fundamental questions about model risk and pricing uniqueness in incomplete markets inadequately addressed. This limitation has critical practical implications: derivatives practitioners who hedge best-of options using basket-equivalent instruments face fundamental distributional uncertainty that compounds the well-recognized non-linearity challenges. We establish this non-uniqueness using convex analysis (extreme ray characterization demonstrating geometric incompatibility between payoff structures), measure theory (explicit construction of distinct equivalent probability measures), and geometric analysis (payoff structure comparison). Specifically, we prove that the set of equivalent probability measures consistent with observed basket prices contains distinct measures yielding different best-of option prices, with explicit no-arbitrage bounds [ a K , b K ] quantifying this uncertainty. Our theoretical contribution provides the first rigorous mathematical foundation for several empirically observed market phenomena: wide bid-ask spreads on extremal options, practitioners’ preference for over-hedging strategies, and substantial model reserves for exotic derivatives. We demonstrate through concrete examples that substantial model risk persists even with perfect basket calibration and equivalent measure constraints. For risk-neutral pricing applications, equivalent martingale measure constraints can be imposed using optimal transport theory, though this requires additional mathematical complexity via Schrödinger bridge techniques while preserving our fundamental non-uniqueness results. The findings establish that additional market instruments beyond basket options are mathematically necessary for robust exotic derivative pricing.

Suggested Citation

  • Mohammed Ahnouch & Lotfi Elaachak & Abderrahim Ghadi, 2025. "Non-Uniqueness of Best-Of Option Prices Under Basket Calibration," Risks, MDPI, vol. 13(6), pages 1-14, June.
  • Handle: RePEc:gam:jrisks:v:13:y:2025:i:6:p:117-:d:1681464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/13/6/117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/13/6/117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
    2. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    3. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    4. Joost Driessen & Pascal J. Maenhout & Grigory Vilkov, 2009. "The Price of Correlation Risk: Evidence from Equity Options," Journal of Finance, American Finance Association, vol. 64(3), pages 1377-1406, June.
    5. Guillaume Coqueret & Bertrand Tavin, 2020. "A note on implied correlation for bivariate contracts," Economics Bulletin, AccessEcon, vol. 40(2), pages 1388-1396.
    6. Stephan Eckstein & Michael Kupper, 2018. "Computation of optimal transport and related hedging problems via penalization and neural networks," Papers 1802.08539, arXiv.org, revised Jan 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Eckstein & Gaoyue Guo & Tongseok Lim & Jan Obloj, 2019. "Robust pricing and hedging of options on multiple assets and its numerics," Papers 1909.03870, arXiv.org, revised Oct 2020.
    2. Ariel Neufeld & Julian Sester, 2021. "Model-free price bounds under dynamic option trading," Papers 2101.01024, arXiv.org, revised Jul 2021.
    3. Ariel Neufeld & Julian Sester, 2021. "A deep learning approach to data-driven model-free pricing and to martingale optimal transport," Papers 2103.11435, arXiv.org, revised Dec 2022.
    4. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    5. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    6. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    7. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    8. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    9. Christian Keller & Michael C. Tseng, 2023. "Arrow-Debreu Meets Kyle: Price Discovery Across Derivatives," Papers 2302.13426, arXiv.org, revised Aug 2025.
    10. Ian W. R. Martin & Christian Wagner, 2019. "What Is the Expected Return on a Stock?," Journal of Finance, American Finance Association, vol. 74(4), pages 1887-1929, August.
    11. Vozlyublennaia, Nadia & Meshcheryakov, Artem, 2014. "Dynamic correlation structure and security risk," Journal of Economics and Business, Elsevier, vol. 73(C), pages 48-64.
    12. Jianlei Han & Martina Linnenluecke & Zhangxin Liu & Zheyao Pan & Tom Smith, 2019. "A general equilibrium approach to pricing volatility risk," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
    13. Linn Engstrom & Sigrid Kallblad & Johan Karlsson, 2024. "Computation of Robust Option Prices via Structured Multi-Marginal Martingale Optimal Transport," Papers 2406.09959, arXiv.org, revised Mar 2025.
    14. Erik Vogt, 2014. "Option-implied term structures," Staff Reports 706, Federal Reserve Bank of New York.
    15. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    16. Brinkmann, Felix & Kempf, Alexander & Korn, Olaf, 2013. "Forward-looking measures of higher-order dependencies with an application to portfolio selection," CFR Working Papers 13-08, University of Cologne, Centre for Financial Research (CFR).
    17. Wolfgang Karl Hardle & Elena Silyakova, 2020. "Implied Basket Correlation Dynamics," Papers 2009.09770, arXiv.org.
    18. Härdle Wolfgang Karl & Silyakova Elena, 2016. "Implied basket correlation dynamics," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 1-20, September.
    19. Pollet, Joshua M. & Wilson, Mungo, 2010. "Average correlation and stock market returns," Journal of Financial Economics, Elsevier, vol. 96(3), pages 364-380, June.
    20. Stephan Eckstein & Michael Kupper, 2019. "Martingale transport with homogeneous stock movements," Papers 1908.10242, arXiv.org, revised May 2021.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:6:p:117-:d:1681464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.