IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i9p111-d410920.html
   My bibliography  Save this article

The Impact of Coal’s Petrographic Composition on Its Suitability for the Gasification Process: The Example of Polish Deposits

Author

Listed:
  • Barbara Bielowicz

    (Faculty of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Jacek Misiak

    (Faculty of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

In this paper, we discuss the impact of the rank of coal, petrographic composition, and physico-chemical coal properties on the release and composition of syngas during coal gasification in a CO 2 atmosphere. This study used humic coals (parabituminous to anthracite) and lithotypes (bright coal and dull coal). Gasification was performed at temperatures between 600 and 1100 °C. It was found that the gas release depends on the temperature and rank of coal, and the reactivity increases with the increasing rank of coal. It was shown that the coal lithotype does not affect the gas composition or the process. Until 900 °C, the most intense processes were observed for higher rank coals. Above 1000 °C, the most reactive coals had a vitrinite reflectance of 0.5–0.6%. It was confirmed that the gasification of low-rank coal should be performed at temperatures above 1000 °C, and the reactivity of coal depends on the petrographic composition and physico-chemical features. It was shown that inertinite has a negative impact on the H 2 content; at 950 °C, the increase in H 2 depends on the rank of coal and vitrinite content. The physicochemical properties of coal rely on the content of maceral groups and the rank of coal. An improved understanding these relationships will allow the optimal selection of coal for gasification.

Suggested Citation

  • Barbara Bielowicz & Jacek Misiak, 2020. "The Impact of Coal’s Petrographic Composition on Its Suitability for the Gasification Process: The Example of Polish Deposits," Resources, MDPI, vol. 9(9), pages 1-20, September.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:9:p:111-:d:410920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/9/111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/9/111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irfan, Muhammad F. & Usman, Muhammad R. & Kusakabe, K., 2011. "Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review," Energy, Elsevier, vol. 36(1), pages 12-40.
    2. Honorata Nyga-Łukaszewska & Kentaka Aruga & Katarzyna Stala-Szlugaj, 2020. "Energy Security of Poland and Coal Supply: Price Analysis," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karczewski, Mateusz & Porada, Stanisław, 2023. "Physically mixed black liquor as a catalytic additive for pressurised steam gasification of different rank bituminous coals," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Sung-Wook & Park, Jong-Soo & Lee, Chun-Boo & Lee, Dong-Wook & Kim, Hakjoo & Ra, Ho Won & Kim, Sung-Hyun & Ryi, Shin-Kun, 2014. "H2 recovery and CO2 capture after water–gas shift reactor using synthesis gas from coal gasification," Energy, Elsevier, vol. 66(C), pages 635-642.
    2. Nazim Hajiyev & Klaudia Smoląg & Ali Abbasov & Valeriy Prasolov, 2020. "Energy War Strategies: The 21st Century Experience," Energies, MDPI, vol. 13(21), pages 1-15, November.
    3. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    4. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    5. Duan, Zhengxiao & Zhang, Yanni & Deng, Jun & Shu, Pan & Yao, Di, 2023. "A systematic exploration of mapping knowledge domains for free radical research related to coal," Energy, Elsevier, vol. 282(C).
    6. Aurelia Rybak & Aleksandra Rybak, 2021. "Methods of Ensuring Energy Security with the Use of Hard Coal—The Case of Poland," Energies, MDPI, vol. 14(18), pages 1-25, September.
    7. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    8. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    9. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    10. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    11. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    12. Sirui Tong & Bin Miao & Lan Zhang & Siew Hwa Chan, 2022. "Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms," Energies, MDPI, vol. 15(7), pages 1-30, April.
    13. Ziębik, Andrzej & Malik, Tomasz & Liszka, Marcin, 2015. "Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification," Energy, Elsevier, vol. 92(P2), pages 179-188.
    14. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    15. Sylwia Mrozowska & Jan A. Wendt & Krzysztof Tomaszewski, 2021. "The Challenges of Poland’s Energy Transition," Energies, MDPI, vol. 14(23), pages 1-22, December.
    16. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    17. Hong, Yong C. & Lee, Sang J. & Shin, Dong H. & Kim, Ye J. & Lee, Bong J. & Cho, Seong Y. & Chang, Han S., 2012. "Syngas production from gasification of brown coal in a microwave torch plasma," Energy, Elsevier, vol. 47(1), pages 36-40.
    18. Janusz Zdeb & Natalia Howaniec & Adam Smoliński, 2019. "Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-12, January.
    19. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden, 2023. "Changes in the Polish Coal Sector Economic Situation with the Background of the European Union Energy Security and Eco-Efficiency Policy," Energies, MDPI, vol. 16(2), pages 1-17, January.
    20. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden & Tomasz Rokicki, 2022. "The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis," Energies, MDPI, vol. 15(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:9:p:111-:d:410920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.