IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v13y2024i7p100-d1438873.html
   My bibliography  Save this article

Valorization of Fine-Fraction CDW in Binary Pozzolanic CDW/Bamboo Leaf Ash Mixtures for the Elaboration of New Ternary Low-Carbon Cement

Author

Listed:
  • Javier Villar-Hernández

    (Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Sao Paulo 13635-900, SP, Brazil)

  • Ernesto Villar-Cociña

    (Department of Physics, Central University of Las Villas, Santa Clara 54830, Cuba)

  • Holmer Savastano

    (Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Sao Paulo 13635-900, SP, Brazil)

  • Moisés Frías Rojas

    (Eduardo Torroja Institute (CSIC), c/Serrano Galvache, 4, 28033 Madrid, Spain)

Abstract

This paper presents the characterization of a binary mixture of construction and demolition waste (CDW) and bamboo leaf ash (BLAsh) calcined at 600 °C (novel mixture) and the study of its pozzolanic behavior. Different dosages in a pozzolan/Ca(OH) 2 system were employed. The aim is the valorization of fine-fraction CDW that achieves a more reactive binary mixture and allows an adequate use of CDW as waste, as CDW is a material of limited use due to its low pozzolanic activity. The pozzolanic behavior of the mixture was analyzed using the conductometric method, which measures the electrical conductivity in the CDW + BLAsh/CH solution versus reaction time. With the application of a kinetic–diffusive mathematical model, the kinetic parameters of the pozzolanic reaction were quantified. This allowed a quantitative evaluation of the pozzolanic activity based on the values of these parameters. To validate these results, other experimental techniques were used: X-ray diffraction, thermogravimetry and scanning electron microscopy. Also, mechanical compressive strength assays were carried out. The results show an increase in the pozzolanic activity of binary mixes of CDW + BLAsh for all the dosages used in comparison to the pozzolanic activity of CDW alone. The quantitative assessment (kinetic parameters) shows that the binary mixture CDW50 + BLAsh50 is the most reactive (reaction rate constant of 7.88 × 10 −1 h −1 ) and is superior to the mixtures CDW60 + BLAsh40 and CDW70 + BLAs30. Compressive strength tests show higher strength values for the ternary mixes (OPC + CDW + BLAsh) compared to the binary mixes (OPC + CDW). In view of the results, the binary blend of pozzolans CDW + BLAsh is suitable for the manufacture of future low-carbon ternary cements.

Suggested Citation

  • Javier Villar-Hernández & Ernesto Villar-Cociña & Holmer Savastano & Moisés Frías Rojas, 2024. "Valorization of Fine-Fraction CDW in Binary Pozzolanic CDW/Bamboo Leaf Ash Mixtures for the Elaboration of New Ternary Low-Carbon Cement," Resources, MDPI, vol. 13(7), pages 1-20, July.
  • Handle: RePEc:gam:jresou:v:13:y:2024:i:7:p:100-:d:1438873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/13/7/100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/13/7/100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karellas, S. & Leontaritis, A.-D. & Panousis, G. & Bellos, E. & Kakaras, E., 2013. "Energetic and exergetic analysis of waste heat recovery systems in the cement industry," Energy, Elsevier, vol. 58(C), pages 147-156.
    2. Becker, Nir & Kimhi, Ayal & Argaman, Eli, 2020. "Costs and benefits of waste soils removal," Land Use Policy, Elsevier, vol. 99(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Maksimov & Vladimir Kindra & Andrey Vegera & Andrey Rogalev & Nikolay Rogalev, 2024. "Thermodynamic Analysis and Optimization of Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 17(24), pages 1-27, December.
    2. Jung, Chung Woo & Song, Joo Young & Kang, Yong Tae, 2018. "Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water," Energy, Elsevier, vol. 145(C), pages 458-467.
    3. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    4. Liya Ren & Jianyu Liu & Huaixin Wang, 2020. "Thermodynamic Optimization of a Waste Heat Power System under Economic Constraint," Energies, MDPI, vol. 13(13), pages 1-23, July.
    5. Mikulčić, Hrvoje & Vujanović, Milan & Ashhab, Moh'd Sami & Duić, Neven, 2014. "Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone," Energy, Elsevier, vol. 75(C), pages 89-96.
    6. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    7. Utlu, Zafer, 2015. "Investigation of the potential for heat recovery at low, medium, and high stages in the Turkish industrial sector (TIS): An application," Energy, Elsevier, vol. 81(C), pages 394-405.
    8. Liu, Yan & Yang, Jian & Wang, Jin & Cheng, Zhi-long & Wang, Qiu-wang, 2014. "Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed," Energy, Elsevier, vol. 67(C), pages 370-380.
    9. Yali Wang & Haidong Yang & Kangkang Xu, 2020. "Thermal Performance Combined with Cooling System Parameters Study for a Roller Kiln Based on Energy-Exergy Analysis," Energies, MDPI, vol. 13(15), pages 1-31, July.
    10. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    11. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.
    12. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    13. Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).
    14. Lee, Ung & Mitsos, Alexander, 2017. "Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification," Energy, Elsevier, vol. 127(C), pages 489-501.
    15. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    16. Kang, Lixia & Tang, Jianping & Liu, Yongzhong, 2020. "Optimal design of an organic Rankine cycle system considering the expected variations on heat sources," Energy, Elsevier, vol. 213(C).
    17. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    18. Yin, Qian & Du, Wen-Jing & Ji, Xing-Lin & Cheng, Lin, 2016. "Optimization design and economic analyses of heat recovery exchangers on rotary kilns," Applied Energy, Elsevier, vol. 180(C), pages 743-756.
    19. Shu, Gequn & Zhao, Mingru & Tian, Hua & Wei, Haiqiao & Liang, Xingyu & Huo, Yongzhan & Zhu, Weijie, 2016. "Experimental investigation on thermal OS/ORC (Oil Storage/Organic Rankine Cycle) system for waste heat recovery from diesel engine," Energy, Elsevier, vol. 107(C), pages 693-706.
    20. Yin, Qian & Du, Wen-Jing & Cheng, Lin, 2017. "Optimization design of heat recovery systems on rotary kilns using genetic algorithms," Applied Energy, Elsevier, vol. 202(C), pages 153-168.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:13:y:2024:i:7:p:100-:d:1438873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.