IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2758-d668610.html
   My bibliography  Save this article

A New Extended Cosine—G Distributions for Lifetime Studies

Author

Listed:
  • Mustapha Muhammad

    (School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China
    Department of Mathematical Sciences, Bayero University Kano, Kano 700241, Nigeria)

  • Rashad A. R. Bantan

    (Department of Marine Geology, Faculty of Marines Science, King AbdulAziz University, Jeddah 21551, Saudi Arabia)

  • Lixia Liu

    (School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China)

  • Christophe Chesneau

    (Department of Mathematics, Université de Caen, LMNO, Campus II, Science 3, 14032 Caen, France)

  • Muhammad H. Tahir

    (Department of Statistics, The Islamia University of Bahawalpur, Punjab 63100, Pakistan)

  • Farrukh Jamal

    (Department of Statistics, The Islamia University of Bahawalpur, Punjab 63100, Pakistan)

  • Mohammed Elgarhy

    (The Higher Institute of Commercial Sciences, Al Mahalla Al Kubra, Algarbia 31951, Egypt)

Abstract

In this article, we introduce a new extended cosine family of distributions. Some important mathematical and statistical properties are studied, including asymptotic results, a quantile function, series representation of the cumulative distribution and probability density functions, moments, moments of residual life, reliability parameter, and order statistics. Three special members of the family are proposed and discussed, namely, the extended cosine Weibull, extended cosine power, and extended cosine generalized half-logistic distributions. Maximum likelihood, least-square, percentile, and Bayes methods are considered for parameter estimation. Simulation studies are used to assess these methods and show their satisfactory performance. The stress–strength reliability underlying the extended cosine Weibull distribution is discussed. In particular, the stress–strength reliability parameter is estimated via a Bayes method using gamma prior under the square error loss, absolute error loss, maximum a posteriori, general entropy loss, and linear exponential loss functions. In the end, three real applications of the findings are provided for illustration; one of them concerns stress–strength data analyzed by the extended cosine Weibull distribution.

Suggested Citation

  • Mustapha Muhammad & Rashad A. R. Bantan & Lixia Liu & Christophe Chesneau & Muhammad H. Tahir & Farrukh Jamal & Mohammed Elgarhy, 2021. "A New Extended Cosine—G Distributions for Lifetime Studies," Mathematics, MDPI, vol. 9(21), pages 1-29, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2758-:d:668610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    2. Farrukh Jamal & Christophe Chesneau & Dalal Lala Bouali & Mahmood Ul Hassan, 2021. "Beyond the Sin-G family: The transformed Sin-G family," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-22, May.
    3. David Hinkley, 1977. "On Quick Choice of Power Transformation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(1), pages 67-69, March.
    4. Ayman Baklizi & Abed El Qader El-Masri, 2004. "Shrinkage estimation of P(X>Y) in the exponential case with common location parameter," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 59(2), pages 163-171, May.
    5. Mahmoud, M.A.W. & Alam, Farouq Mohammad A., 2010. "The generalized linear exponential distribution," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1005-1014, June.
    6. Saralees Nadarajah & Samuel Kotz, 2006. "Beta trigonometric distributions," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 5(3), pages 207-224, December.
    7. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustapha Muhammad & Lixia Liu & Badamasi Abba & Isyaku Muhammad & Mouna Bouchane & Hexin Zhang & Sani Musa, 2023. "A New Extension of the Topp–Leone-Family of Models with Applications to Real Data," Annals of Data Science, Springer, vol. 10(1), pages 225-250, February.
    2. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    3. Ahmad Abubakar Suleiman & Hanita Daud & Narinderjit Singh Sawaran Singh & Mahmod Othman & Aliyu Ismail Ishaq & Rajalingam Sokkalingam, 2023. "A Novel Odd Beta Prime-Logistic Distribution: Desirable Mathematical Properties and Applications to Engineering and Environmental Data," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    4. Salem A. Alyami & Ibrahim Elbatal & Naif Alotaibi & Ehab M. Almetwally & Mohammed Elgarhy, 2022. "Modeling to Factor Productivity of the United Kingdom Food Chain: Using a New Lifetime-Generated Family of Distributions," Sustainability, MDPI, vol. 14(14), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    2. Maha A Aldahlan & Farrukh Jamal & Christophe Chesneau & Ibrahim Elbatal & Mohammed Elgarhy, 2020. "Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-25, March.
    3. Xu, Meng & Droguett, Enrique López & Lins, Isis Didier & das Chagas Moura, Márcio, 2017. "On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 93-105.
    4. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    5. Ammara Tanveer & Muhammad Azam & Muhammad Aslam & Muhammad Shujaat Navaz, 2020. "Attribute np control charts using resampling systems for monitoring non-conforming items under exponentiated half-logistic distribution," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 115-143.
    6. Adolfo Quiroz & Miguel Nakamura & Francisco Pérez, 1996. "Estimation of a multivariate Box-Cox transformation to elliptical symmetry via the empirical characteristic function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(4), pages 687-709, December.
    7. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    8. Barriga, Gladys D.C. & Louzada-Neto, Franscisco & Cancho, Vicente G., 2011. "The complementary exponential power lifetime model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1250-1259, March.
    9. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    10. Maria T. Vasileva, 2023. "On Topp-Leone-G Power Series: Saturation in the Hausdorff Sense and Applications," Mathematics, MDPI, vol. 11(22), pages 1-11, November.
    11. Yair Orbach & Gila Fruchter, 2014. "Predicting product life cycle patterns," Marketing Letters, Springer, vol. 25(1), pages 37-52, March.
    12. Rodrigues, Josemar & Balakrishnan, N. & Cordeiro, Gauss M. & de Castro, Mário, 2011. "A unified view on lifetime distributions arising from selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3311-3319, December.
    13. Ayush Tripathi & Umesh Singh & Sanjay Kumar Singh, 2021. "Inferences for the DUS-Exponential Distribution Based on Upper Record Values," Annals of Data Science, Springer, vol. 8(2), pages 387-403, June.
    14. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    15. C. Satheesh Kumar & S. Dharmaja, 2014. "On some properties of Kies distribution," METRON, Springer;Sapienza Università di Roma, vol. 72(1), pages 97-122, April.
    16. Zhang, Tieling & Dwight, Richard, 2013. "Choosing an optimal model for failure data analysis by graphical approach," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 111-123.
    17. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    18. Ausaina Niyomdecha & Patchanok Srisuradetchai, 2023. "Complementary Gamma Zero-Truncated Poisson Distribution and Its Application," Mathematics, MDPI, vol. 11(11), pages 1-13, June.
    19. Freddy Hernández & Viviana Giampaoli, 2018. "The Impact of Misspecified Random Effect Distribution in a Weibull Regression Mixed Model," Stats, MDPI, vol. 1(1), pages 1-29, May.
    20. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2758-:d:668610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.