IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p2004-d618876.html
   My bibliography  Save this article

An Improved Variable Kernel Density Estimator Based on L 2 Regularization

Author

Listed:
  • Yi Jin

    (Department of Trace Inspection Technology, Criminal Investigation Police University of China, Shenyang 110854, China
    Key Laboratory of Impression Evidence Examination and Identification Technology, The Ministry of Public Security of the People’s Republic of China, Shenyang 110854, China)

  • Yulin He

    (Big Data Institute, College of Computer Science & Software Engineering, Shenzhen University, Shenzhen 518060, China
    National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518060, China)

  • Defa Huang

    (Big Data Institute, College of Computer Science & Software Engineering, Shenzhen University, Shenzhen 518060, China)

Abstract

The nature of the kernel density estimator (KDE) is to find the underlying probability density function ( p.d.f ) for a given dataset. The key to training the KDE is to determine the optimal bandwidth or Parzen window. All the data points share a fixed bandwidth (scalar for univariate KDE and vector for multivariate KDE) in the fixed KDE (FKDE). In this paper, we propose an improved variable KDE (IVKDE) which determines the optimal bandwidth for each data point in the given dataset based on the integrated squared error (ISE) criterion with the L 2 regularization term. An effective optimization algorithm is developed to solve the improved objective function. We compare the estimation performance of IVKDE with FKDE and VKDE based on ISE criterion without L 2 regularization on four univariate and four multivariate probability distributions. The experimental results show that IVKDE obtains lower estimation errors and thus demonstrate the effectiveness of IVKDE.

Suggested Citation

  • Yi Jin & Yulin He & Defa Huang, 2021. "An Improved Variable Kernel Density Estimator Based on L 2 Regularization," Mathematics, MDPI, vol. 9(16), pages 1-12, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:2004-:d:618876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/2004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/2004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azzalini, Adelchi & Menardi, Giovanna, 2014. "Clustering via Nonparametric Density Estimation: The R Package pdfCluster," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i11).
    2. Wu, Tiee-Jian & Chen, Ching-Fu & Chen, Huang-Yu, 2007. "A variable bandwidth selector in multivariate kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 462-467, February.
    3. Su Chen, 2015. "Optimal Bandwidth Selection for Kernel Density Functionals Estimation," Journal of Probability and Statistics, Hindawi, vol. 2015, pages 1-21, August.
    4. Jones, M. C., 1991. "The roles of ISE and MISE in density estimation," Statistics & Probability Letters, Elsevier, vol. 12(1), pages 51-56, July.
    5. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2001. "Cluster analysis: a further approach based on density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 36(4), pages 441-459, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenny Farmer & Eve Allen & Donald J. Jacobs, 2022. "Quasar Identification Using Multivariate Probability Density Estimated from Nonparametric Conditional Probabilities," Mathematics, MDPI, vol. 11(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanna Menardi, 2016. "A Review on Modal Clustering," International Statistical Review, International Statistical Institute, vol. 84(3), pages 413-433, December.
    2. Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
    3. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    4. Bolancé, Catalina & Guillén, Montserrat & Nielsen, Jens Perch, 2008. "Inverse beta transformation in kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1757-1764, September.
    5. David Pitt & Montserrat Guillen & Catalina Bolancé, 2011. "Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers XREAP2011-06, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
    6. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
    7. Yumi Oh & Peng Lyu & Sunwoo Ko & Jeongik Min & Juwhan Song, 2024. "Enhancing Broiler Weight Estimation through Gaussian Kernel Density Estimation Modeling," Agriculture, MDPI, vol. 14(6), pages 1-20, May.
    8. Xia, Yingcun & Li, W. K., 2002. "Asymptotic Behavior of Bandwidth Selected by the Cross-Validation Method for Local Polynomial Fitting," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 265-287, November.
    9. Madan Mohan Rout & Josodhir Das & Kamal, 2018. "Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 967-985, September.
    10. Shahid Latif & Slobodan P. Simonovic, 2022. "Nonparametric Approach to Copula Estimation in Compounding The Joint Impact of Storm Surge and Rainfall Events in Coastal Flood Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5599-5632, November.
    11. Cadre, BenoI^t, 2006. "Kernel estimation of density level sets," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 999-1023, April.
    12. Zudi Lu & Dag Johan Steinskog & Dag Tjøstheim & Qiwei Yao, 2009. "Adaptively varying‐coefficient spatiotemporal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 859-880, September.
    13. Xijian Hu & Yaori Lu & Huiguo Zhang & Haijun Jiang & Qingdong Shi, 2021. "Selection of the Bandwidth Matrix in Spatial Varying Coefficient Models to Detect Anisotropic Regression Relationships," Mathematics, MDPI, vol. 9(18), pages 1-14, September.
    14. David Pitt & Montserrat Guillén, 2010. "An introduction to parametric and non-parametric models for bivariate positive insurance claim severity distributions," Working Papers XREAP2010-03, Xarxa de Referència en Economia Aplicada (XREAP), revised Mar 2010.
    15. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    16. Miguel Reyes & Mario Francisco-Fernández & Ricardo Cao, 2017. "Bandwidth selection in kernel density estimation for interval-grouped data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 527-545, September.
    17. Tonellato, Stefano F., 2020. "Bayesian nonparametric clustering as a community detection problem," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    18. Zicheng Wang & Yunong Xia & Lauren Mills & Athanasios N. Nikolakopoulos & Nicole Maeser & Scott M. Dehm & Jason M. Sheltzer & Ruping Sun, 2024. "Evolving copy number gains promote tumor expansion and bolster mutational diversification," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Duc Devroye & J. Beirlant & R. Cao & R. Fraiman & P. Hall & M. Jones & Gábor Lugosi & E. Mammen & J. Marron & C. Sánchez-Sellero & J. Uña & F. Udina & L. Devroye, 1997. "Universal smoothing factor selection in density estimation: theory and practice," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(2), pages 223-320, December.
    20. Tomas Ruzgas & Mantas Lukauskas & Gedmantas Čepkauskas, 2021. "Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model," Mathematics, MDPI, vol. 9(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:2004-:d:618876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.