IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i10p1143-d557230.html
   My bibliography  Save this article

Residue Sum Formula for Pricing Options under the Variance Gamma Model

Author

Listed:
  • Pedro Febrer

    (ISEG—School of Economics and Management, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal)

  • João Guerra

    (ISEG—School of Economics and Management, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal
    REM—Research in Economics and Mathematics, CEMAPRE, Rua do Quelhas 6, 1200-781 Lisboa, Portugal)

Abstract

We present and prove a triple sum series formula for the European call option price in a market model where the underlying asset price is driven by a Variance Gamma process. In order to obtain this formula, we present some concepts and properties of multidimensional complex analysis, with particular emphasis on the multidimensional Jordan Lemma and the application of residue calculus to a Mellin–Barnes integral representation in C 3 , for the call option price. Moreover, we derive triple sum series formulas for some of the Greeks associated to the call option and we discuss the numerical accuracy and convergence of the main pricing formula.

Suggested Citation

  • Pedro Febrer & João Guerra, 2021. "Residue Sum Formula for Pricing Options under the Variance Gamma Model," Mathematics, MDPI, vol. 9(10), pages 1-29, May.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:10:p:1143-:d:557230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/10/1143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/10/1143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    3. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    4. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    6. Jean-Philippe Aguilar & Jan Korbel, 2018. "Option Pricing Models Driven by the Space-Time Fractional Diffusion: Series Representation and Applications," Papers 1802.09864, arXiv.org.
    7. Jean-Philippe Aguilar & Jan Korbel, 2019. "Simple Formulas for Pricing and Hedging European Options in the Finite Moment Log-Stable Model," Risks, MDPI, vol. 7(2), pages 1-14, April.
    8. Rama Cont & Ekaterina Voltchkova, 2005. "A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models," Post-Print halshs-00445645, HAL.
    9. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    10. Jean-Philippe Aguilar & Cyril Coste & Jan Korbel, 2017. "Series representation of the pricing formula for the European option driven by space-time fractional diffusion," Papers 1712.04990, arXiv.org, revised Oct 2018.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazi Wahadul Hasan & Maliha Binte Hanif, 2022. "A pricing model for real-estate business in Bangladesh incorporating the uncertainty in buyer’s readiness: considerations during COVID-19 pandemic," SN Business & Economics, Springer, vol. 2(10), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    2. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    3. Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
    4. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    5. Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
    6. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    7. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    8. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    9. Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    11. Ballotta, Laura, 2005. "A Lévy process-based framework for the fair valuation of participating life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 173-196, October.
    12. Alexander Kushpel, 2015. "Pricing of high-dimensional options," Papers 1510.07221, arXiv.org.
    13. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, October.
    14. Tat Lung Chan, 2017. "Singular Fourier-Pad\'e Series Expansion of European Option Prices," Papers 1706.06709, arXiv.org, revised Nov 2017.
    15. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2020. "Early exercise boundaries for American-style knock-out options," European Journal of Operational Research, Elsevier, vol. 285(2), pages 753-766.
    16. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    17. Madan, Dilip B. & Wang, King, 2016. "Nonrandom price movements," Finance Research Letters, Elsevier, vol. 17(C), pages 103-109.
    18. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    19. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    20. Ulze, Markus & Stadler, Johannes & Rathgeber, Andreas W., 2021. "No country for old distributions? On the comparison of implied option parameters between the Brownian motion and variance gamma process," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 163-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:10:p:1143-:d:557230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.