IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1621-d416016.html
   My bibliography  Save this article

The LR-Type Fuzzy Multi-Objective Vendor Selection Problem in Supply Chain Management

Author

Listed:
  • Irfan Ali

    (Department of Statistics & Operations Research, Aligarh Muslim University, Aligarh 202002, India)

  • Armin Fügenschuh

    (Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany)

  • Srikant Gupta

    (Jaipuria Institute of Management, Jaipur 302033, India)

  • Umar Muhammad Modibbo

    (Department of Statistics & Operations Research, Aligarh Muslim University, Aligarh 202002, India
    Department of Statistics & Operations Research, Modibbo Adama University of Technology, Yola, PMB 2076, Nigeria)

Abstract

Vendor selection is an established problem in supply chain management. It is regarded as a strategic resource by manufacturers, which must be managed efficiently. Any inappropriate selection of the vendors may lead to severe issues in the supply chain network. Hence, the desire to develop a model that minimizes the combination of transportation, deliveries, and ordering costs under uncertainty situation. In this paper, a multi-objective vendor selection problem under fuzzy environment is solved using a fuzzy goal programming approach. The vendor selection problem was modeled as a multi-objective problem, including three primary objectives of minimizing the transportation cost; the late deliveries; and the net ordering cost subject to constraints related to aggregate demand; vendor capacity; budget allocation; purchasing value; vendors’ quota; and quantity rejected. The proposed model input parameters are considered to be LR fuzzy numbers. The effectiveness of the model is illustrated with simulated data using R statistical package based on a real-life case study which was analyzed using LINGO 16.0 optimization software. The decision on the vendor’s quota allocation and selection under different degree of vagueness in the information was provided. The proposed model can address realistic vendor selection problem in the fuzzy environment and can serve as a useful tool for multi-criteria decision-making in supply chain management.

Suggested Citation

  • Irfan Ali & Armin Fügenschuh & Srikant Gupta & Umar Muhammad Modibbo, 2020. "The LR-Type Fuzzy Multi-Objective Vendor Selection Problem in Supply Chain Management," Mathematics, MDPI, vol. 8(9), pages 1-25, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1621-:d:416016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Jadidi, O. & Zolfaghari, S. & Cavalieri, S., 2014. "A new normalized goal programming model for multi-objective problems: A case of supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 148(C), pages 158-165.
    3. Pokharel, Shaligram, 2008. "A two objective model for decision making in a supply chain," International Journal of Production Economics, Elsevier, vol. 111(2), pages 378-388, February.
    4. Amid, Amin & Ghodsypour, S.H. & O'Brien, Christopher, 2009. "A weighted additive fuzzy multiobjective model for the supplier selection problem under price breaks in a supply Chain," International Journal of Production Economics, Elsevier, vol. 121(2), pages 323-332, October.
    5. Tam, Maggie C. Y. & Tummala, V. M. Rao, 2001. "An application of the AHP in vendor selection of a telecommunications system," Omega, Elsevier, vol. 29(2), pages 171-182, April.
    6. Kumar, Manoj & Vrat, Prem & Shankar, Ravi, 2006. "A fuzzy programming approach for vendor selection problem in a supply chain," International Journal of Production Economics, Elsevier, vol. 101(2), pages 273-285, June.
    7. Xia, Weijun & Wu, Zhiming, 2007. "Supplier selection with multiple criteria in volume discount environments," Omega, Elsevier, vol. 35(5), pages 494-504, October.
    8. Krishnendu Shaw, 2017. "Fuzzy multi-objective, multi-item, multi-supplier, lot-sizing considering carbon footprint," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 11(2), pages 171-203.
    9. Wu, Desheng Dash & Zhang, Yidong & Wu, Dexiang & Olson, David L., 2010. "Fuzzy multi-objective programming for supplier selection and risk modeling: A possibility approach," European Journal of Operational Research, Elsevier, vol. 200(3), pages 774-787, February.
    10. Amid, A. & Ghodsypour, S.H. & O'Brien, C., 2006. "Fuzzy multiobjective linear model for supplier selection in a supply chain," International Journal of Production Economics, Elsevier, vol. 104(2), pages 394-407, December.
    11. L. Lee Manzer & R. Duane Ireland & Philip M. Van Auken, 1980. "A Matrix Approach to Vendor Selection for Small Business Buyers," Entrepreneurship Theory and Practice, , vol. 4(3), pages 21-28, January.
    12. Amid, A. & Ghodsypour, S.H. & O'Brien, C., 2011. "A weighted max-min model for fuzzy multi-objective supplier selection in a supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 139-145, May.
    13. Ching-Ter Chang & Cheng-Yuan Ku & Hui-Ping Ho, 2010. "Fuzzy Multi-Choice Goal Programming for Supplier Selection," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 1(3), pages 28-52, July.
    14. S Yahya & B Kingsman, 1999. "Vendor rating for an entrepreneur development programme: a case study using the analytic hierarchy process method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(9), pages 916-930, September.
    15. Chien-Wen Shen & Yen-Ting Peng & Chang-Shu Tu, 2019. "Multi-Criteria Decision-Making Techniques for Solving the Airport Ground Handling Service Equipment Vendor Selection Problem," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    16. Rezaei, Jafar & Davoodi, Mansoor, 2011. "Multi-objective models for lot-sizing with supplier selection," International Journal of Production Economics, Elsevier, vol. 130(1), pages 77-86, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jadidi, O. & Zolfaghari, S. & Cavalieri, S., 2014. "A new normalized goal programming model for multi-objective problems: A case of supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 148(C), pages 158-165.
    2. Lin, Rong-Ho, 2012. "An integrated model for supplier selection under a fuzzy situation," International Journal of Production Economics, Elsevier, vol. 138(1), pages 55-61.
    3. Zeki Ayağ & Funda Samanlioglu, 2016. "An intelligent approach to supplier evaluation in automotive sector," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 889-903, August.
    4. Ching-Ter Chang & Huang-Mu Chen & Zheng-Yun Zhuang, 2014. "Integrated multi-choice goal programming and multi-segment goal programming for supplier selection considering imperfect-quality and price-quantity discounts in a multiple sourcing environment," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(5), pages 1101-1111, May.
    5. Cinzia Colapinto & Raja Jayaraman & Simone Marsiglio, 2017. "Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review," Annals of Operations Research, Springer, vol. 251(1), pages 7-40, April.
    6. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    7. Eleonora Bottani & Piera Centobelli & Teresa Murino & Ehsan Shekarian, 2018. "A QFD-ANP Method for Supplier Selection with Benefits, Opportunities, Costs and Risks Considerations," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 911-939, May.
    8. Hosseininasab, Amin & Ahmadi, Abbas, 2015. "Selecting a supplier portfolio with value, development, and risk consideration," European Journal of Operational Research, Elsevier, vol. 245(1), pages 146-156.
    9. Yu-Jwo Tao & Hsuan-Shih Lee & Chang-Shu Tu, 2021. "Analytic Hierarchy Process-Based Airport Ground Handling Equipment Purchase Decision Model," Sustainability, MDPI, vol. 13(5), pages 1-16, February.
    10. García Alcaraz Jorge Luis & Alvarado Iniesta Alejandro & Maldonado Macías Aidé Araceli, 2013. "Selección de proveedores basada en análisis dimensional," Contaduría y Administración, Accounting and Management, vol. 58(3), pages 249-278, julio-sep.
    11. Wetzstein, Anton & Hartmann, Evi & Benton jr., W.C. & Hohenstein, Nils-Ole, 2016. "A systematic assessment of supplier selection literature – State-of-the-art and future scope," International Journal of Production Economics, Elsevier, vol. 182(C), pages 304-323.
    12. Congjun Rao & Mark Goh & Junjun Zheng, 2017. "Decision Mechanism for Supplier Selection Under Sustainability," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 87-115, January.
    13. Mukherjee, Krishnendu, 2014. "Supplier selection criteria and methods: past, present and future," MPRA Paper 60079, University Library of Munich, Germany.
    14. Chien-Wen Shen & Yen-Ting Peng & Chang-Shu Tu, 2019. "Considering Product Life Cycle Cost Purchasing Strategy for Solving Vendor Selection Problems," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    15. Xu, Jiuping & Ding, Can, 2011. "A class of chance constrained multiobjective linear programming with birandom coefficients and its application to vendors selection," International Journal of Production Economics, Elsevier, vol. 131(2), pages 709-720, June.
    16. Ali Salmasnia & Hamid Daliri & Ali Ghorbanian & Hadi Mokhtari, 2018. "A statistical analysis and simulation based approach to an uncertain supplier selection problem with discount option," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1250-1259, December.
    17. Tseng, Fang-Mei & Chiu, Yu-Jing & Chen, Ja-Shen, 2009. "Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan's large-sized TFT-LCD panel companies," Omega, Elsevier, vol. 37(3), pages 686-697, June.
    18. Ehsan Afshar Bakeshlou & Alireza Arshadi Khamseh & Mohammad Ali Goudarzian Asl & Javad Sadeghi & Mostafa Abbaszadeh, 2017. "Evaluating a green supplier selection problem using a hybrid MODM algorithm," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 913-927, April.
    19. L. A. Shah & A. Etienne & A. Siadat & F. Vernadat, 2016. "Decision-making in the manufacturing environment using a value-risk graph," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 617-630, June.
    20. Salah Alden Ghasimi & Rizauddin Ramli & Nizaroyani Saibani & Khashayar Danesh Narooei, 2018. "An uncertain mathematical model to maximize profit of the defective goods supply chain by selecting appropriate suppliers," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1219-1234, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1621-:d:416016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.