IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p1002-d373402.html
   My bibliography  Save this article

The Online Distribution System of Inventory-Routing Problem with Simultaneous Deliveries and Returns Concerning CO 2 Emission Cost

Author

Listed:
  • Gia-Shie Liu

    (Department of Information Management, Lunghwa University of Science and Technology, Taoyuan 33306, Taiwan)

  • Kuo-Ping Lin

    (Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 40704, Taiwan
    Faculty of Finance and Banking, Ton Duc Thang University, Ho Chi Minh City 729000, Vietnam)

Abstract

This study attempts to consider CO 2 emission cost to propose an online distribution system of inventory-routing problem with simultaneous deliveries and returns (IRPSDRCO 2 ). The proposed IRPSDRCO 2 mathematical models will be developed to find the total inventory routing cost, the CO 2 emission cost, the optimal delivery routes, the economic order quantities, the optimal reordering points, the optimal service levels, the optimal common review interval, and the optimal maximum inventory levels for all retail stores delivered in these scheduled routes. The proposed IRPSDRCO 2 model further applies the savings method, the target insert heuristic method, the target exchange heuristic method, and the repeated target heuristic method to find the optimal solution and the related scheduled routing plan. The sensitivity analyses will be conducted for this proposed IRPSDRCO 2 model based on different parameters to provide very helpful decision-making information for a distribution system design. The performance of the proposed repeated target heuristic method is demonstrated to be better than most of four other combination methods regarding both the inventory routing cost and CPU running time. Consequently, it should be very helpful for logistics firms to design their distribution system by following the structure and the detailed procedure flow of the online distribution system developed by this study.

Suggested Citation

  • Gia-Shie Liu & Kuo-Ping Lin, 2020. "The Online Distribution System of Inventory-Routing Problem with Simultaneous Deliveries and Returns Concerning CO 2 Emission Cost," Mathematics, MDPI, vol. 8(6), pages 1-27, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1002-:d:373402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/1002/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/1002/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agra, Agostinho & Christiansen, Marielle & Delgado, Alexandrino & Simonetti, Luidi, 2014. "Hybrid heuristics for a short sea inventory routing problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 924-935.
    2. Tseng, Po-Hsing & Lin, Dung-Ying & Chien, Steven, 2014. "Investigating the impact of highway electronic toll collection to the external cost: A case study in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 265-272.
    3. Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2014. "Multi-product multi-period inventory routing problem with a transshipment option : A green approach," Post-Print hal-02313081, HAL.
    4. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Haijema, Rene & van der Vorst, Jack G.A.J., 2015. "Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 164(C), pages 118-133.
    5. Zhang, Ying & Qi, Mingyao & Miao, Lixin & Liu, Erchao, 2014. "Hybrid metaheuristic solutions to inventory location routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 305-323.
    6. Tiwari, Anurag & Chang, Pei-Chann, 2015. "A block recombination approach to solve green vehicle routing problem," International Journal of Production Economics, Elsevier, vol. 164(C), pages 379-387.
    7. Srivastava, R, 1993. "Alternate solution procedures for the location-routing problem," Omega, Elsevier, vol. 21(4), pages 497-506, July.
    8. Mirzapour Al-e-hashem, S.M.J. & Rekik, Yacine, 2014. "Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach," International Journal of Production Economics, Elsevier, vol. 157(C), pages 80-88.
    9. Coelho, Leandro C. & Laporte, Gilbert, 2014. "Improved solutions for inventory-routing problems through valid inequalities and input ordering," International Journal of Production Economics, Elsevier, vol. 155(C), pages 391-397.
    10. Vansteenwegen, Pieter & Mateo, Manuel, 2014. "An iterated local search algorithm for the single-vehicle cyclic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 237(3), pages 802-813.
    11. Irnich, Stefan & Laganà, Demetrio & Schlebusch, Claudia & Vocaturo, Francesca, 2015. "Two-phase branch-and-cut for the mixed capacitated general routing problem," European Journal of Operational Research, Elsevier, vol. 243(1), pages 17-29.
    12. Tuzun, Dilek & Burke, Laura I., 1999. "A two-phase tabu search approach to the location routing problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 87-99, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    2. Cheng, Chun & Yang, Peng & Qi, Mingyao & Rousseau, Louis-Martin, 2017. "Modeling a green inventory routing problem with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 97-112.
    3. Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.
    4. Micheli, Guido J.L. & Mantella, Fabio, 2018. "Modelling an environmentally-extended inventory routing problem with demand uncertainty and a heterogeneous fleet under carbon control policies," International Journal of Production Economics, Elsevier, vol. 204(C), pages 316-327.
    5. De, Manoranjan & Giri, B.C., 2020. "Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    6. Timajchi, Ali & Mirzapour Al-e-Hashem, Seyed M.J. & Rekik, Yacine, 2019. "Inventory routing problem for hazardous and deteriorating items in the presence of accident risk with transshipment option," International Journal of Production Economics, Elsevier, vol. 209(C), pages 302-315.
    7. Darvish, Maryam & Archetti, Claudia & Coelho, Leandro C., 2019. "Trade-offs between environmental and economic performance in production and inventory-routing problems," International Journal of Production Economics, Elsevier, vol. 217(C), pages 269-280.
    8. Lixia Li & Yu Yang & Gaoyuan Qin, 2019. "Optimization of Integrated Inventory Routing Problem for Cold Chain Logistics Considering Carbon Footprint and Carbon Regulations," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    9. Rau, Hsin & Budiman, Syarif Daniel & Widyadana, Gede Agus, 2018. "Optimization of the multi-objective green cyclical inventory routing problem using discrete multi-swarm PSO method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 51-75.
    10. Kumar, V.N.S.A. & Kumar, V. & Brady, M. & Garza-Reyes, Jose Arturo & Simpson, M., 2017. "Resolving forward-reverse logistics multi-period model using evolutionary algorithms," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 458-469.
    11. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    12. Bertazzi, Luca & Chua, Geoffrey A. & Laganà, Demetrio & Paradiso, Rosario, 2022. "Analysis of effective sets of routes for the split-delivery periodic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 298(2), pages 463-477.
    13. Coelho, Leandro Callegari & De Maio, Annarita & Laganà, Demetrio, 2020. "A variable MIP neighborhood descent for the multi-attribute inventory routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    14. Roberto Baldacci & Aristide Mingozzi & Roberto Wolfler Calvo, 2011. "An Exact Method for the Capacitated Location-Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1284-1296, October.
    15. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    16. Peres, Igor T. & Repolho, Hugo M. & Martinelli, Rafael & Monteiro, Nathália J., 2017. "Optimization in inventory-routing problem with planned transshipment: A case study in the retail industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 748-756.
    17. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    18. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    19. Li, Ming & Wang, Zheng & Chan, Felix T.S., 2016. "A robust inventory routing policy under inventory inaccuracy and replenishment lead-time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 290-305.
    20. Pourya Pourhejazy & Oh Kyoung Kwon, 2016. "The New Generation of Operations Research Methods in Supply Chain Optimization: A Review," Sustainability, MDPI, vol. 8(10), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1002-:d:373402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.