IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p49-d304200.html
   My bibliography  Save this article

Carrying Capacity of a Population Diffusing in a Heterogeneous Environment

Author

Listed:
  • D.L. DeAngelis

    (U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, FL 32653, USA)

  • Bo Zhang

    (Department of Environmental Science and Policy, University of California at Davis, Davis, CA 95616, USA)

  • Wei-Ming Ni

    (School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
    School of Science and Engineering, Chinese University of Hong Kong-Shenzhen, Shenzhen 518000, China)

  • Yuanshi Wang

    (School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China)

Abstract

The carrying capacity of the environment for a population is one of the key concepts in ecology and it is incorporated in the growth term of reaction-diffusion equations describing populations in space. Analysis of reaction-diffusion models of populations in heterogeneous space have shown that, when the maximum growth rate and carrying capacity in a logistic growth function vary in space, conditions exist for which the total population size at equilibrium (i) exceeds the total population that which would occur in the absence of diffusion and (ii) exceeds that which would occur if the system were homogeneous and the total carrying capacity, computed as the integral over the local carrying capacities, was the same in the heterogeneous and homogeneous cases. We review here work over the past few years that has explained these apparently counter-intuitive results in terms of the way input of energy or another limiting resource (e.g., a nutrient) varies across the system. We report on both mathematical analysis and laboratory experiments confirming that total population size in a heterogeneous system with diffusion can exceed that in the system without diffusion. We further report, however, that when the resource of the population in question is explicitly modeled as a coupled variable, as in a reaction-diffusion chemostat model rather than a model with logistic growth, the total population in the heterogeneous system with diffusion cannot exceed the total population size in the corresponding homogeneous system in which the total carrying capacities are the same.

Suggested Citation

  • D.L. DeAngelis & Bo Zhang & Wei-Ming Ni & Yuanshi Wang, 2020. "Carrying Capacity of a Population Diffusing in a Heterogeneous Environment," Mathematics, MDPI, vol. 8(1), pages 1-12, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:49-:d:304200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/49/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/49/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yuanshi & DeAngelis, Donald L., 2019. "Energetic constraints and the paradox of a diffusing population in a heterogeneous environment," Theoretical Population Biology, Elsevier, vol. 125(C), pages 30-37.
    2. DeAngelis, Donald L. & Trexler, Joel C. & Cosner, Chris & Obaza, Adam & Jopp, Fred, 2010. "Fish population dynamics in a seasonally varying wetland," Ecological Modelling, Elsevier, vol. 221(8), pages 1131-1137.
    3. Arditi, Roger & Lobry, Claude & Sari, Tewfik, 2015. "Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation," Theoretical Population Biology, Elsevier, vol. 106(C), pages 45-59.
    4. Ang, Tau Keong & Safuan, Hamizah M., 2019. "Harvesting in a toxicated intraguild predator–prey fishery model with variable carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 158-168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Korotkov & Sergei Petrovskii, 2023. "Extinctions in a Metapopulation with Nonlinear Dispersal Coupling," Mathematics, MDPI, vol. 11(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Daozhou & Lou, Yuan, 2022. "Total biomass of a single population in two-patch environments," Theoretical Population Biology, Elsevier, vol. 146(C), pages 1-14.
    2. Auger, Pierre & Kooi, Bob & Moussaoui, Ali, 2022. "Increase of maximum sustainable yield for fishery in two patches with fast migration," Ecological Modelling, Elsevier, vol. 467(C).
    3. Wang, Yuanshi, 2019. "Asymmetric diffusion in a two-patch consumer-resource system," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 258-273.
    4. Jiapeng Qu & Zelin Liu & Zhenggang Guo & Yikang Li & Huakun Zhou, 2021. "A System Dynamics Model for Assessing the Efficacy of Lethal Control for Sustainable Management of Ochotona curzoniae on Tibetan Plateau," Sustainability, MDPI, vol. 13(2), pages 1-11, January.
    5. Arditi, Roger & Lobry, Claude & Sari, Tewfik, 2018. "Asymmetric dispersal in the multi-patch logistic equation," Theoretical Population Biology, Elsevier, vol. 120(C), pages 11-15.
    6. Sadykov, Alexander & Farnsworth, Keith D., 2021. "Model of two competing populations in two habitats with migration: Application to optimal marine protected area size," Theoretical Population Biology, Elsevier, vol. 142(C), pages 114-122.
    7. Wang, Yuanshi & DeAngelis, Donald L., 2019. "Energetic constraints and the paradox of a diffusing population in a heterogeneous environment," Theoretical Population Biology, Elsevier, vol. 125(C), pages 30-37.
    8. Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Wu, Hong & Wang, Yuanshi & Li, Yufeng & DeAngelis, Donald L., 2020. "Dispersal asymmetry in a two-patch system with source–sink populations," Theoretical Population Biology, Elsevier, vol. 131(C), pages 54-65.
    10. Huang, Rong & Wang, Yuanshi & Wu, Hong, 2020. "Population abundance in predator–prey systems with predator’s dispersal between two patches," Theoretical Population Biology, Elsevier, vol. 135(C), pages 1-8.
    11. Jiale Ban & Yuanshi Wang & Hong Wu, 2022. "Dynamics of predator-prey systems with prey’s dispersal between patches," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 550-569, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:49-:d:304200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.