IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i8p730-d256628.html
   My bibliography  Save this article

The Performance Quantitative Model Based on the Specification and Relation of the Component

Author

Listed:
  • Baohua Wang

    (School of Computer Science and Technology, Huaibei Normal University, Huaibei 235000, China)

  • Danning Li

    (Guizhou Academy of Sciences, Guiyang 55001, China)

  • Shun Zhang

    (Guizhou Academy of Sciences, Guiyang 55001, China)

Abstract

The trustworthiness of software is crucial to some safety critical areas. Performance is an important attribute of software trustworthiness. Software component technology is the mainstream technology of software development. How to achieve the performance of component systems efficiently and accurately is a challenging issue for component-based software development. In this paper, the performance quantification method of the component is proposed. First, performance specification is formally defined. Second, a refinement relation is introduced and the performance quantification method of the component system is presented. Finally, a case study is given to illustrate the effectiveness of the method.

Suggested Citation

  • Baohua Wang & Danning Li & Shun Zhang, 2019. "The Performance Quantitative Model Based on the Specification and Relation of the Component," Mathematics, MDPI, vol. 7(8), pages 1-14, August.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:730-:d:256628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/8/730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/8/730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, J.F. & Mu, L.F. & Kwong, C.K. & Luo, X.G., 2011. "An optimization model for software component selection under multiple applications development," European Journal of Operational Research, Elsevier, vol. 212(2), pages 301-311, July.
    2. Guo, Haitao & Yang, Xianhui, 2007. "A simple reliability block diagram method for safety integrity verification," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1267-1273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    2. Jin, Hui & Rausand, Marvin, 2014. "Reliability of safety-instrumented systems subject to partial testing and common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 146-151.
    3. Liu, Yiliu & Rausand, Marvin, 2013. "Reliability effects of test strategies on safety-instrumented systems in different demand modes," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 235-243.
    4. Bistouni, Fathollah & Jahanshahi, Mohsen, 2014. "Analyzing the reliability of shuffle-exchange networks using reliability block diagrams," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 97-106.
    5. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    6. Lifeng Mu & Vijayan Sugumaran & Fangyuan Wang, 2020. "A Hybrid Genetic Algorithm for Software Architecture Re-Modularization," Information Systems Frontiers, Springer, vol. 22(5), pages 1133-1161, October.
    7. Cui, Lin & Shu, Yidan & Wang, Zhaohui & Zhao, Jinsong & Qiu, Tong & Sun, Wenyong & Wei, Zhenqiang, 2012. "HASILT: An intelligent software platform for HAZOP, LOPA, SRS and SIL verification," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 56-64.
    8. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    9. Zhang, Zixuan & Yang, Lin & Xu, Youwei & Zhu, Ran & Cao, Yining, 2023. "A novel reliability redundancy allocation problem formulation for complex systems," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Ángel Valera & Francisco Valero & Marina Vallés & Antonio Besa & Vicente Mata & Carlos Llopis-Albert, 2021. "Navigation of Autonomous Light Vehicles Using an Optimal Trajectory Planning Algorithm," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    11. Kumar, Manoj & Verma, A.K. & Srividya, A., 2008. "Modeling demand rate and imperfect proof-test and analysis of their effect on system safety," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1720-1729.
    12. Jin, Hui & Lundteigen, Mary Ann & Rausand, Marvin, 2013. "New PFH-formulas for k-out-of-n:F-systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 112-118.
    13. Zhao, Xianqiong & Malasse, Olaf & Buchheit, Grégory, 2019. "Verification of safety integrity level of high demand system based on Stochastic Petri Nets and Monte Carlo Simulation," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 258-265.
    14. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    15. Stoicho Stoev, 2019. "Using of Additional Packages of Components for Accelerated Application Development," Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, Union of Scientists - Varna, Economic Sciences Section, vol. 8(2), pages 171-179, August.
    16. Moustafa, Kassem & Hu, Zhen & Mourelatos, Zissimos P. & Baseski, Igor & Majcher, Monica, 2021. "System reliability analysis using component-level and system-level accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    17. Kristjanpoller, Fredy & Crespo, Adolfo & Barberá, Luis & Viveros, Pablo, 2017. "Biomethanation plant assessment based on reliability impact on operational effectiveness," Renewable Energy, Elsevier, vol. 101(C), pages 301-310.
    18. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Design optimization of a safety-instrumented system based on RAMS+C addressing IEC 61508 requirements and diverse redundancy," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 162-179.
    19. Chae, Young Ho & Kim, Seung Geun & Seong, Poong Hyun, 2021. "Reliability of the system with loops: Factor graph based approach," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    20. Pradeep Kumar & Shailendra Narayan Singh & Sudhir Dawra, 2022. "Software component reusability prediction using extra tree classifier and enhanced Harris hawks optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 892-903, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:730-:d:256628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.