IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i9p1527-d1650095.html
   My bibliography  Save this article

Multivariate Extension Application for Spearman’s Footrule Correlation Coefficient

Author

Listed:
  • Liqi Xia

    (School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China)

  • Sami Ullah

    (School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China)

  • Li Guan

    (School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China)

Abstract

This paper presents a simplified and computationally feasible multivariate extension. A correlation matrix is constructed using pairwise Spearman’s footrule correlation coefficients, and these coefficients are shown to jointly converge to a multivariate normal distribution. A global test statistic based on the Frobenius norm of this matrix asymptotically follows a weighted sum of chi-square distributions. Simulation studies and two real-world applications (a sensory analysis of French Jura wines and the characterization of plant leaf specimens) demonstrate the practical utility of the proposed method, bridging the gap between theoretical rigor and practical implementation in multivariate nonparametric inference.

Suggested Citation

  • Liqi Xia & Sami Ullah & Li Guan, 2025. "Multivariate Extension Application for Spearman’s Footrule Correlation Coefficient," Mathematics, MDPI, vol. 13(9), pages 1-17, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1527-:d:1650095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/9/1527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/9/1527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Genest & Johanna Nešlehová & Noomen Ben Ghorbal, 2010. "Spearman's footrule and Gini's gamma: a review with complements," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(8), pages 937-954.
    2. Susanne Mikki, 2010. "Comparing Google Scholar and ISI Web of Science for Earth Sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 321-331, February.
    3. Manuel Úbeda-Flores, 2005. "Multivariate versions of Blomqvist’s beta and Spearman’s footrule," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 781-788, December.
    4. Javad Behboodian & Ali Dolati & Manuel Úbeda-Flores, 2007. "A multivariate version of Gini's rank association coefficient," Statistical Papers, Springer, vol. 48(2), pages 295-304, April.
    5. Hongjian Shi & Mathias Drton & Fang Han, 2022. "Distribution-Free Consistent Independence Tests via Center-Outward Ranks and Signs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 395-410, January.
    6. Shili Lin & Jie Ding, 2009. "Integration of Ranked Lists via Cross Entropy Monte Carlo with Applications to mRNA and microRNA Studies," Biometrics, The International Biometric Society, vol. 65(1), pages 9-18, March.
    7. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salim Bouzebda, 2023. "On Weak Convergence of the Bootstrap Copula Empirical Process with Random Resample Size," Stats, MDPI, vol. 6(1), pages 1-16, February.
    2. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2019. "Empirical Process Results for Exchangeable Arrays," Papers 1906.11293, arXiv.org, revised May 2020.
    3. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    4. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    5. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    6. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    7. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Mar 2025.
    8. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    9. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    10. Jan-Lukas Wermuth, 2025. "Proper Correlation Coefficients for Nominal Random Variables," LIS Working papers 897, LIS Cross-National Data Center in Luxembourg.
    11. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    12. Ayden Higgins & Koen Jochmans, 2024. "Bootstrap Inference for Fixed‐Effect Models," Econometrica, Econometric Society, vol. 92(2), pages 411-427, March.
    13. Arai, Yoichi & Otsu, Taisuke & Xu, Mengshan, 2024. "GLS under monotone heteroskedasticity," Journal of Econometrics, Elsevier, vol. 246(1).
    14. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Jun 2025.
    15. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    16. Higgins, Ayden & Jochmans, Koen, 2025. "Inference in Dynamic Models for Panel Data Using The Moving Block Bootstrap," TSE Working Papers 25-1620, Toulouse School of Economics (TSE).
    17. Denis Koshelev & Alexey Ponomarenko & Sergei Seleznev, 2023. "Amortized neural networks for agent-based model forecasting," Papers 2308.05753, arXiv.org.
    18. Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.
    19. Yao Luo & Peijun Sang, 2022. "Efficient Estimation of Structural Models via Sieves," Papers 2204.13488, arXiv.org, revised Feb 2025.
    20. Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1527-:d:1650095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.