IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p418-d1578364.html
   My bibliography  Save this article

An Improved Marriage in Honey-Bee Optimization Algorithm for Minimizing Earliness/Tardiness Penalties in Single-Machine Scheduling with a Restrictive Common Due Date

Author

Listed:
  • Pedro Palominos

    (Industrial Engineering Department, University of Santiago de Chile, Avenida Victor Jara 3769, Santiago 9170124, Chile)

  • Mauricio Mazo

    (Industrial Engineering Department, University of Santiago de Chile, Avenida Victor Jara 3769, Santiago 9170124, Chile)

  • Guillermo Fuertes

    (Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins, Avenida Viel 1497, Ruta 5 Sur, Santiago 8370993, Chile)

  • Miguel Alfaro

    (Industrial Engineering Department, University of Santiago de Chile, Avenida Victor Jara 3769, Santiago 9170124, Chile)

Abstract

This study evaluates the efficiency of a swarm intelligence algorithm called marriage in honey-bee optimization (MBO) in solving the single-machine weighted earliness/tardiness problem, a type of NP-hard combinatorial optimization problem. The goal is to find the optimal sequence for completing a set of tasks on a single machine, minimizing the total penalty incurred for tasks being completed too early or too late compared to their deadlines. To achieve this goal, the study adapts the MBO metaheuristic by introducing modifications to optimize the objective function and produce high-quality solutions within reasonable execution times. The novelty of this work lies in the application of MBO to the single-machine weighted earliness/tardiness problem, an approach previously unexplored in this context. MBO was evaluated using the test problem set from Biskup and Feldmann. It achieved an average improvement of 1.03% across 280 problems, surpassing upper bounds in 141 cases (50.35%) and matching or exceeding them in 193 cases (68.93%). In the most constrained problems ( h = 0.2 and h = 0.4), the method achieved an average improvement of 3.77%, while for h = 0.6 and h = 0.8, the average error was 1.72%. Compared to other metaheuristics, MBO demonstrated competitiveness, with a maximum error of 1.12%. Overall, MBO exhibited strong competitiveness, delivering significant improvements and high efficiency in the problems studied.

Suggested Citation

  • Pedro Palominos & Mauricio Mazo & Guillermo Fuertes & Miguel Alfaro, 2025. "An Improved Marriage in Honey-Bee Optimization Algorithm for Minimizing Earliness/Tardiness Penalties in Single-Machine Scheduling with a Restrictive Common Due Date," Mathematics, MDPI, vol. 13(3), pages 1-29, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:418-:d:1578364
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Yogeshwar & S. Kamalakkannan, 2023. "Proposed association rule hiding based privacy preservation model with block chain technology for IoT healthcare sector," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 26(15), pages 1898-1915, November.
    2. Hoogeveen, J. A. & van de Velde, S. L., 1991. "Scheduling around a small common due date," European Journal of Operational Research, Elsevier, vol. 55(2), pages 237-242, November.
    3. Oğuzhan Ahmet Arik, 2023. "A heuristic for single machine common due date assignment problem with different earliness/tardiness weights," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1561-1574, September.
    4. Zheng-Guo Lv & Li-Han Zhang & Xiao-Yuan Wang & Ji-Bo Wang, 2024. "Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
    5. Pedro Palominos & Carla Ortega & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas & Mauricio Camargo & Victor Parada & Gustavo Gatica & Jesus M. Munoz-Pacheco, 2022. "Chaotic Honeybees Optimization Algorithms Approach for Traveling Salesperson Problem," Complexity, Hindawi, vol. 2022, pages 1-17, October.
    6. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    7. J. A. Hoogeveen & H. Oosterhout & S. L. van de Velde, 1994. "New Lower and Upper Bounds for Scheduling Around a Small Common Due Date," Operations Research, INFORMS, vol. 42(1), pages 102-110, February.
    8. Abubaker Younis & Fatima Belabbes & Petru Adrian Cotfas & Daniel Tudor Cotfas, 2024. "Utilizing the Honeybees Mating-Inspired Firefly Algorithm to Extract Parameters of the Wind Speed Weibull Model," Forecasting, MDPI, vol. 6(2), pages 1-21, May.
    9. Hino, Celso M. & Ronconi, Debora P. & Mendes, Andre B., 2005. "Minimizing earliness and tardiness penalties in a single-machine problem with a common due date," European Journal of Operational Research, Elsevier, vol. 160(1), pages 190-201, January.
    10. Nicholas G. Hall & Marc E. Posner, 1991. "Earliness-Tardiness Scheduling Problems, I: Weighted Deviation of Completion Times About a Common Due Date," Operations Research, INFORMS, vol. 39(5), pages 836-846, October.
    11. Jin Qian & Yu Zhan, 2021. "The Due Date Assignment Scheduling Problem with Delivery Times and Truncated Sum-of-Processing-Times-Based Learning Effect," Mathematics, MDPI, vol. 9(23), pages 1-14, November.
    12. Lin, Shih-Wei & Chou, Shuo-Yan & Ying, Kuo-Ching, 2007. "A sequential exchange approach for minimizing earliness-tardiness penalties of single-machine scheduling with a common due date," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1294-1301, March.
    13. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    14. Tan, Zhen & Fu, Guanqi, 2024. "Just-in-time scheduling problem with affine idleness cost," European Journal of Operational Research, Elsevier, vol. 313(3), pages 954-976.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramon Alvarez-Valdes & Enric Crespo & Jose Tamarit & Fulgencia Villa, 2012. "Minimizing weighted earliness–tardiness on a single machine with a common due date using quadratic models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 754-767, October.
    2. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    3. Lin, Shih-Wei & Chou, Shuo-Yan & Ying, Kuo-Ching, 2007. "A sequential exchange approach for minimizing earliness-tardiness penalties of single-machine scheduling with a common due date," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1294-1301, March.
    4. Enrique Gerstl & Gur Mosheiov, 2014. "Single machine just‐in‐time scheduling problems with two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 1-16, February.
    5. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    6. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    7. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    8. Sridharan, V. & Zhou, Z., 1996. "A decision theory based scheduling procedure for single-machine weighted earliness and tardiness problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 292-301, October.
    9. Cai, X. & Lum, V. Y. S. & Chan, J. M. T., 1997. "Scheduling about a common due date with kob-dependent asymmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 98(1), pages 154-168, April.
    10. Kerem Bülbül & Safia Kedad-Sidhoum & Halil Şen, 2019. "Single-machine common due date total earliness/tardiness scheduling with machine unavailability," Journal of Scheduling, Springer, vol. 22(5), pages 543-565, October.
    11. Falq, Anne-Elisabeth & Fouilhoux, Pierre & Kedad-Sidhoum, Safia, 2022. "Dominance inequalities for scheduling around an unrestrictive common due date," European Journal of Operational Research, Elsevier, vol. 296(2), pages 453-464.
    12. Sang, Yao-Wen & Wang, Jun-Qiang & Sterna, Małgorzata & Błażewicz, Jacek, 2023. "Single machine scheduling with due date assignment to minimize the total weighted lead time penalty and late work," Omega, Elsevier, vol. 121(C).
    13. Weng, Michael X. & Ventura, Jose A., 1996. "Single-machine earliness-tardiness scheduling about a common due date with tolerances," International Journal of Production Economics, Elsevier, vol. 42(3), pages 217-227, April.
    14. Chen, Wei-Yang & Sheen, Gwo-Ji, 2007. "Single-machine scheduling with multiple performance measures: Minimizing job-dependent earliness and tardiness subject to the number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 214-229, September.
    15. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.
    16. Marjan van den Akker & Han Hoogeveen & Steef van de Velde, 2002. "Combining Column Generation and Lagrangean Relaxation to Solve a Single-Machine Common Due Date Problem," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 37-51, February.
    17. Narges Hosseini & Kevin Taaffe, 2015. "Allocating operating room block time using historical caseload variability," Health Care Management Science, Springer, vol. 18(4), pages 419-430, December.
    18. Chen, Zhi-Long & Lee, Chung-Yee, 2002. "Parallel machine scheduling with a common due window," European Journal of Operational Research, Elsevier, vol. 136(3), pages 512-527, February.
    19. Gur Mosheiov & Daniel Oron, 2004. "Due‐window assignment with unit processing‐time jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 1005-1017, October.
    20. Biskup, Dirk & Feldmann, Martin, 2005. "On scheduling around large restrictive common due windows," European Journal of Operational Research, Elsevier, vol. 162(3), pages 740-761, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:418-:d:1578364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.