IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i16p2674-d1728337.html
   My bibliography  Save this article

On Solving the Knapsack Problem with Conflicts

Author

Listed:
  • Roberto Montemanni

    (Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy)

  • Derek H. Smith

    (Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK)

Abstract

A variant of the well-known Knapsack Problem is studied in this paper. In the classic problem, a set of items is given, with each item characterized by a weight and a profit. A knapsack of a given capacity is provided, and the problem consists of selecting a subset of items such that the total weight does not exceed the capacity of the knapsack, while the total profit is maximized. In the variation considered in the present work, pairs of items are conflicting, and cannot be selected at the same time. The resulting problem, which can be used to model several real applications, is considerably harder to approach than the classic one. In this paper, we consider a mixed-integer linear program representing the problem and we solve it with a state-of-the-art black-box software. A vast experimental procedure on the instances available from the literature, and adopted in the last decade by the community, indicates that the approach we propose achieves results comparable with, and in many cases better than, those of state-of-the-art methods, notwithstanding that the latter are typically based on more complex and problem-specific ideas and algorithms than the idea we propose.

Suggested Citation

  • Roberto Montemanni & Derek H. Smith, 2025. "On Solving the Knapsack Problem with Conflicts," Mathematics, MDPI, vol. 13(16), pages 1-12, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2674-:d:1728337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/16/2674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/16/2674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    2. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Zequn & Hao, Jin-Kao & Ren, Jintong & Glover, Fred, 2023. "Responsive strategic oscillation for solving the disjunctively constrained knapsack problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 993-1009.
    2. Fatma-Zohra Baatout & Mhand Hifi, 2023. "A two-phase hybrid evolutionary algorithm for solving the bi-objective scheduling multiprocessor tasks on two dedicated processors," Journal of Heuristics, Springer, vol. 29(2), pages 229-267, June.
    3. Andrea Bettinelli & Valentina Cacchiani & Enrico Malaguti, 2017. "A Branch-and-Bound Algorithm for the Knapsack Problem with Conflict Graph," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 457-473, August.
    4. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2023. "Features for the 0-1 knapsack problem based on inclusionwise maximal solutions," European Journal of Operational Research, Elsevier, vol. 311(1), pages 36-55.
    5. Matheus M. Vieira & Bruno Nogueira & Rian G. S. Pinheiro, 2024. "An integrated ILS-VND strategy for solving the knapsack problem with forfeits," Journal of Heuristics, Springer, vol. 30(5), pages 399-420, December.
    6. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
    7. Orlando Rivera Letelier & François Clautiaux & Ruslan Sadykov, 2022. "Bin Packing Problem with Time Lags," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2249-2270, July.
    8. Tibor Szkaliczki, 2025. "Solution Methods for the Multiple-Choice Knapsack Problem and Their Applications," Mathematics, MDPI, vol. 13(7), pages 1-35, March.
    9. Thekra Al-douri & Mhand Hifi & Vassilis Zissimopoulos, 2021. "An iterative algorithm for the Max-Min knapsack problem with multiple scenarios," Operational Research, Springer, vol. 21(2), pages 1355-1392, June.
    10. Raka Jovanovic & Stefan Voß, 2024. "Matheuristic fixed set search applied to the multidimensional knapsack problem and the knapsack problem with forfeit sets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1329-1365, December.
    11. Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
    12. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
    13. San Segundo, Pablo & Furini, Fabio & Álvarez, David & Pardalos, Panos M., 2023. "CliSAT: A new exact algorithm for hard maximum clique problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1008-1025.
    14. Carrabs, F. & Cerulli, R. & Mansini, R. & Serra, D. & Sorgente, C., 2025. "Hybridizing Carousel Greedy and Kernel Search: A new approach for the maximum flow problem with conflict constraints," European Journal of Operational Research, Elsevier, vol. 324(2), pages 414-435.
    15. Isma Dahmani & Mhand Hifi, 2021. "A modified descent method-based heuristic for binary quadratic knapsack problems with conflict graphs," Annals of Operations Research, Springer, vol. 298(1), pages 125-147, March.
    16. Stefano Coniglio & Stefano Gualandi, 2022. "Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1006-1023, March.
    17. Mancini, Simona & Gansterer, Margaretha, 2021. "Vehicle scheduling for rental-with-driver services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    18. Bigler, T. & Kammermann, M. & Baumann, P., 2023. "A matheuristic for a customer assignment problem in direct marketing," European Journal of Operational Research, Elsevier, vol. 304(2), pages 689-708.
    19. Caserta, Marco & Voß, Stefan, 2019. "The robust multiple-choice multidimensional knapsack problem," Omega, Elsevier, vol. 86(C), pages 16-27.
    20. Furini, Fabio & Ljubić, Ivana & San Segundo, Pablo & Zhao, Yanlu, 2021. "A branch-and-cut algorithm for the Edge Interdiction Clique Problem," European Journal of Operational Research, Elsevier, vol. 294(1), pages 54-69.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2674-:d:1728337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.