IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i16p2607-d1724685.html
   My bibliography  Save this article

Information Exchange Fluctuation Theorem Under Coarse-Graining

Author

Listed:
  • Lee Jinwoo

    (Department of Mathematics, Kwangwoon University, 20 Kwangwoon-ro, Seoul 01897, Republic of Korea)

Abstract

The fluctuation theorem for information exchange, originally established by Sagawa and Ueda, provides a fundamental framework for understanding the role of correlations in coupled classical stochastic systems. Building upon this foundation, Jinwoo demonstrated that the pointwise mutual information between correlated subsystems captures entropy production as a state function during coupling processes. In this study, we investigate the robustness of this information-theoretic fluctuation theorem under coarse-graining in coupled classical fluctuating systems. We rigorously prove that the fluctuation theorem remains invariant under arbitrary coarse-graining transformations and derive hierarchical relationships between information measures across different scales, thereby establishing its fundamental character as independent of the level of system description. Our results demonstrate that the relationship between information exchange and entropy production is preserved across different scales of observation, providing deeper insights into the thermodynamic foundations of information processing in classical stochastic systems.

Suggested Citation

  • Lee Jinwoo, 2025. "Information Exchange Fluctuation Theorem Under Coarse-Graining," Mathematics, MDPI, vol. 13(16), pages 1-13, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2607-:d:1724685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/16/2607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/16/2607/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2607-:d:1724685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.