IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2503-d1716942.html
   My bibliography  Save this article

A Gray Predictive Evolutionary Algorithm with Adaptive Threshold Adjustment Strategy for Photovoltaic Model Parameter Estimation

Author

Listed:
  • Wencong Wang

    (School of Information and Mathematics, Yangtze University, Jingzhou 434000, China)

  • Baoduo Su

    (School of Information Engineering, Jiaxing Nanhu University, Jiaxing 314000, China)

  • Quan Zhou

    (School of Information and Mathematics, Yangtze University, Jingzhou 434000, China)

  • Qinghua Su

    (School of Information and Mathematics, Yangtze University, Jingzhou 434000, China)

Abstract

Meta-heuristic algorithms are the dominant techniques for parameter estimating for solar photovoltaic (PV) models. Current algorithms are primarily designed with a focus on search performance and convergence speed, but they fail to account for the significant difference in the lengths of the feasible regions for each decision variable in the solar parameter estimation problem. The consideration of variable length difference in algorithm design may be beneficial to the efficiency for solving this problem. A gray predictive evolutionary algorithm with adaptive threshold adjustment strategy (GPEat) is proposed in this paper to estimate the parameters of several solar photovoltaic models. Unlike original GPEs and their existing variants with fixed thresholds, GPEat designs an adaptive threshold adjustment strategy (ATS), which adaptively adjusts the threshold parameter of GPE to be proportional to the length of each dimensional variable of the PV problem. The adaptive change of the threshold helps GPEat to select suitable operators for different dimensions of the PV problem. Several sets of experiments are conducted based on single-, double-, and triple-diode models and PV panel models. The experimental results indicate the highly competitive in parameter estimation for solar PV models of the proposed algorithm.

Suggested Citation

  • Wencong Wang & Baoduo Su & Quan Zhou & Qinghua Su, 2025. "A Gray Predictive Evolutionary Algorithm with Adaptive Threshold Adjustment Strategy for Photovoltaic Model Parameter Estimation," Mathematics, MDPI, vol. 13(15), pages 1-24, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2503-:d:1716942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oliva, Diego & Abd El Aziz, Mohamed & Ella Hassanien, Aboul, 2017. "Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm," Applied Energy, Elsevier, vol. 200(C), pages 141-154.
    2. Khanna, Vandana & Das, B.K. & Bisht, Dinesh & Vandana, & Singh, P.K., 2015. "A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 105-113.
    3. Ishaque, Kashif & Salam, Zainal & Mekhilef, Saad & Shamsudin, Amir, 2012. "Parameter extraction of solar photovoltaic modules using penalty-based differential evolution," Applied Energy, Elsevier, vol. 99(C), pages 297-308.
    4. Tong, Nhan Thanh & Pora, Wanchalerm, 2016. "A parameter extraction technique exploiting intrinsic properties of solar cells," Applied Energy, Elsevier, vol. 176(C), pages 104-115.
    5. Wang, Gang & Zhao, Ke & Shi, Jiangtao & Chen, Wei & Zhang, Haiyang & Yang, Xinsheng & Zhao, Yong, 2017. "An iterative approach for modeling photovoltaic modules without implicit equations," Applied Energy, Elsevier, vol. 202(C), pages 189-198.
    6. Chen, Yifeng & Wang, Xuemeng & Li, Da & Hong, Ruijiang & Shen, Hui, 2011. "Parameters extraction from commercial solar cells I-V characteristics and shunt analysis," Applied Energy, Elsevier, vol. 88(6), pages 2239-2244, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    3. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    4. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    5. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    6. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    7. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    8. Słowik, Adam & Cpałka, Krzysztof & Xue, Yu & Hapka, Aneta, 2024. "An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm," Applied Energy, Elsevier, vol. 364(C).
    9. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    10. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    11. Shufu Yuan & Yuzhang Ji & Yongxu Chen & Xin Liu & Weijun Zhang, 2023. "An Improved Differential Evolution for Parameter Identification of Photovoltaic Models," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    12. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    13. Yousri, Dalia & Thanikanti, Sudhakar Babu & Allam, Dalia & Ramachandaramurthy, Vigna K. & Eteiba, M.B., 2020. "Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters," Energy, Elsevier, vol. 195(C).
    14. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    15. Biswas, Partha P. & Suganthan, P.N. & Wu, Guohua & Amaratunga, Gehan A.J., 2019. "Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 132(C), pages 425-438.
    16. Ragb, Ola & Bakr, Hanan, 2023. "A new technique for estimation of photovoltaic system and tracking power peaks of PV array under partial shading," Energy, Elsevier, vol. 268(C).
    17. Rizk-Allah, Rizk M. & El-Fergany, Attia A., 2021. "Emended heap-based optimizer for characterizing performance of industrial solar generating units using triple-diode model," Energy, Elsevier, vol. 237(C).
    18. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    19. Jianing Li & Cheng Qin & Chen Yang & Bin Ai & Yecheng Zhou, 2023. "Extraction of Single Diode Model Parameters of Solar Cells and PV Modules by Combining an Intelligent Optimization Algorithm with Simplified Explicit Equation Based on Lambert W Function," Energies, MDPI, vol. 16(14), pages 1-23, July.
    20. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2503-:d:1716942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.